Question

2 1 1 1 0 1 1 1 0 These questions have got me confused: 1....

2 1 1
1 0 1
1 1 0

These questions have got me confused:

1. By calculation, I know this matrix has eigenvalue -1, 0, 3 and they are distinct eigenvalues. Can I directly say that this matrix is diagonalizable without calculating the eigenspace and eigenvectors? For all situations, If we get n number of answers from (aλ+b)n , can we directly ensure that the matrix is diagonalizable?

2. My professor uses CA(x)=det(λI-A) but the textbook shows CA(x)=det(λI-A). which one is correct?

Thank you very much.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The questions this week is about diagonalizability of matrices when we have fewer than n different...
The questions this week is about diagonalizability of matrices when we have fewer than n different eigenvalues. Recall the following facts as starting points: • An n × n matrix is diagonalizable if and only if it has n linearly independent eigenvectors. • Eigenvectors with different eigenvalues must be linearly independent. • The number of times an eigenvalue appears as a root of the characteristic polynomial is at least the dimension of the corresponding eigenspace, and the total degree of...
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be...
Which of the following are NECESSARY CONDITIONS for an n x n matrix A to be diagonalizable? i) A has n distinct eigenvalues ii) A has n linearly independent eigenvectors iii) The algebraic multiplicity of each eigenvalue equals its geometric multiplicity iv) A is invertible v) The columns of A are linearly independent NOTE: The answer is more than 1 option.
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1    a) Find all eigenvalues of A. b) Find a basis for each eigenspace of A. c) Determine whether A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that D = P^−1AP. Please show all work and steps clearly please so I can follow your logic and learn to solve similar ones myself. I...
Decide if each of the following statements are true or false. If a statement is true,...
Decide if each of the following statements are true or false. If a statement is true, explain why it is true. If the statement is false, give an example showing that it is false. (a) Let A be an n x n matrix. One root of its characteristic polynomial is 4. The dimension of the eigenspace corresponding to the eigenvalue 4 is at least 1. (b) Let A be an n x n matrix. A is not invertible if and...
et A be the matrix, A = [ 1 1 0 − 1 − 1 0...
et A be the matrix, A = [ 1 1 0 − 1 − 1 0 0 0 3 ] Suppose we know that    det ( A − λ I 3 ) = 3 λ 2 − λ 3 Find a basis for each eigenspace   E λ i of A.
Suppose that a 4 × 4 matrix A has eigenvalues ?1 = 1, ?2 = ?...
Suppose that a 4 × 4 matrix A has eigenvalues ?1 = 1, ?2 = ? 2, ?3 = 4, and ?4 = ? 4. Use the following method to find det (A). If p(?) = det (?I ? A) = ?n + c1?n ? 1 + ? + cn So, on setting ? = 0, we obtain that det (? A) = cn or det (A) = (? 1)ncn det (A) =
What are the eigenvectors and eigenvalues of the matrix A = [ 0 1 1 1]...
What are the eigenvectors and eigenvalues of the matrix A = [ 0 1 1 1] how can i write the vector v = [1 0] as a linear combition of the eigenvectors? please explain
6. Let A =   3 −12 4 −1 0 −2 −1 5 −1 ...
6. Let A =   3 −12 4 −1 0 −2 −1 5 −1   . 1 (a) Find all eigenvalues of A5 (Note: If λ is an eigenvalue of A, then λ n is an eigenvalue of A n for any integer n.). (b) Determine whether A is invertible (Check if the constant term of the characteristic polynomial χA(λ) is non-zero.). (c) If A is invertible, find (i) A−1 using the Cayley-Hamilton theorem (ii) All the eigenvalues...
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...
the Markov chain on S = {1, 2, 3} with transition matrix p is 0 1...
the Markov chain on S = {1, 2, 3} with transition matrix p is 0 1 0 0 1/2 1/2; 1/2 0 1/2 We will compute the limiting behavior of pn(1,1) “by hand”. (A) Find the three eigenvalues λ1, λ2, λ3 of p. Note: some are complex. (B) Deduce abstractly using linear algebra and part (A) that we can write pn(1, 1) = aλn1 + bλn2 + cλn3 for some constants a, b, c. Don’t find these constants yet. (C)...