Question

Show that the matrix is not diagonalizable. 3 −4 3 0 3 3 0 0 4...

Show that the matrix is not diagonalizable.

3 −4 3
0 3 3
0 0 4
Find the eigenvectors x1 and x2 corresponding to λ1 and λ2, respectively.
x1 =
x2 =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5 −4 4 −10 0 0 4 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1=...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1= ⎡⎣⎢⎢ ⎤⎦⎥⎥ and v⃗ 2= ⎡⎣⎢⎢ ⎤⎦⎥⎥ Find the solution to the linear system of differential equations [x′1 x′2]=[−13 20−6 9][x1 x2] satisfying the initial conditions [x1(0)x2(0)]=[6−9]. x1(t)= ______ x2(t)= _____
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0...
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0 -2 6 0 0 4
Let A be a n × n real diagonalizable matrix. Show that A + αIn is...
Let A be a n × n real diagonalizable matrix. Show that A + αIn is also real diagonalizable.
The matrix A= 1 0 0 -1 0 0 1 1 1 3x3 matrix has two...
The matrix A= 1 0 0 -1 0 0 1 1 1 3x3 matrix has two real eigenvalues, one of multiplicity 11 and one of multiplicity 22. Find the eigenvalues and a basis of each eigenspace. λ1 =..........? has multiplicity 1, with a basis of .............? λ2 =..........? has multiplicity 2, with a basis of .............? Find two eigenvalues and basis.
Determine whether the following matrix is diagonalizable. A=[ 1 0 1 0 1 0 -1 0...
Determine whether the following matrix is diagonalizable. A=[ 1 0 1 0 1 0 -1 0 3
Give an example of a nondiagonal 2x2 matrix that is diagonalizable but not invertible. Show that...
Give an example of a nondiagonal 2x2 matrix that is diagonalizable but not invertible. Show that these two facts are the case for your example.
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1    a) Find all eigenvalues of A. b) Find a basis for each eigenspace of A. c) Determine whether A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that D = P^−1AP. Please show all work and steps clearly please so I can follow your logic and learn to solve similar ones myself. I...
2.  For each 3*3 matrix and each eigenvalue below construct a basis for the eigenspace Eλ. A=...
2.  For each 3*3 matrix and each eigenvalue below construct a basis for the eigenspace Eλ. A= (9 42 -30 -4 -25 20 -4 -28 23),λ = 1,3 A= (2 -27 18 0 -7 6 0 -9 8) , λ = −1,2 3. Construct a 2×2 matrix with eigenvectors(4 3) and (−3 −2) with eigen-values 2 and −3, respectively. 4. Let A be the 6*6 diagonal matrix below. For each eigenvalue, compute the multiplicity of λ as a root of the...
Prove or disprove: Can a symmetric matrix be necessarily diagonalizable? Please show clear steps. Thank you.
Prove or disprove: Can a symmetric matrix be necessarily diagonalizable? Please show clear steps. Thank you.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT