Question

1. Let x be a real number, and x > 1. Prove 1 < sqrt(x) and...

1. Let x be a real number, and x > 1. Prove 1 < sqrt(x) and sqrt(x) < x.

2. If x is an integer divisible by 4, and y is an integer that is not, prove x + y is not divisible by 4.

Homework Answers

Answer #1

I hope all my steps are clear to you. For your any doubt please let me know in comments. I shall reply you as soon as possible.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x and y be real numbers. Then prove that sqrt(x^2) = abs(x) and abs(xy) =...
Let x and y be real numbers. Then prove that sqrt(x^2) = abs(x) and abs(xy) = abs(x) * abs(y)
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Suppose x is a positive real number such that x + (1/x) is an integer. Prove...
Suppose x is a positive real number such that x + (1/x) is an integer. Prove that x^2019 + (1/x^2019) is an integer.
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
1) Prove that for all real numbers x and y, if x < y, then x...
1) Prove that for all real numbers x and y, if x < y, then x < (x+y)/2 < y 2) Let a, b ∈ R. Prove that: a) (Triangle inequality) |a + b| ≤ |a| + |b| (HINT: Use Exercise 2.1.12b and Proposition 2.1.12, or a proof by cases.)
) Prove or disprove the statements: (a) If x is a real number such that |x...
) Prove or disprove the statements: (a) If x is a real number such that |x + 2| + |x| ≤ 1, then |x ^2 + 2x − 1| ≤ 2. (b) If x is a real number such that |x + 2| + |x| ≤ 2, then |x^ 2 + 2x − 1| ≤ 2. (c) If x is a real number such that |x + 2| + |x| ≤ 3, then |x ^2 + 2x − 1 |...
prove: Let the real number x have a Base 3 representation of: x = 0.x0x1x2x3x4x5x6x7… where...
prove: Let the real number x have a Base 3 representation of: x = 0.x0x1x2x3x4x5x6x7… where xi  is the ith digit of x. Then, if xi ={ 0 , 2 } (or xi not equal to 1) for all non-negative integers i, then x is in the Cantor set (Cantor dust). Think about induction.
Let X be a randomly selected real number from the interval [0, 1]. Let Y be...
Let X be a randomly selected real number from the interval [0, 1]. Let Y be a randomly selected real number from the interval [X, 1]. a) Find the joint density function for X and Y. b) Find the marginal density for Y. c) Does E(Y) exist? Explain without calculation. Then find E(Y).
(1) Let x be a rational number and y be an irrational. Prove that 2(y-x) is...
(1) Let x be a rational number and y be an irrational. Prove that 2(y-x) is irrational a) Briefly explain which proof method may be most appropriate to prove this statement. For example either contradiction, contraposition or direct proof b) State how to start the proof and then complete the proof
Let X be a non-empty finite set with |X| = n. Prove that the number of...
Let X be a non-empty finite set with |X| = n. Prove that the number of surjections from X to Y = {1, 2} is (2)^n− 2.