Question

(a) This exercise will give an example of a connected space which is not locally connected....

(a) This exercise will give an example of a connected space which is
not locally connected. In the plane R2
, let X0 = [0, 1] × {0},
Y0 = {0} × [0, 1], and for each n ∈ N, let Yn = {1/n} × [0,1]. Let Y = X0 ∪ (S∞
n=0 Yn). as a subspace of R
2 with its usual topology.
Prove that Y is connected but not locally connected. (Note that
this example also shows that a subspace of a locally connected
space need not be locally connected even if it is closed.)
Hint: There are many ways to prove this. One of them is as follows: Define for each n ∈ N, Zn = X0 ∪ Yn and let Z0 = X0 ∪ Y0. State why Zi is connected for each i ∈ N ∪ {0}. State why Y =S∞
i=0 union Zi is connected. To show that Y is
not locally connected, examine the point (0,1/2).
(b) Prove that an open subspace of a locally connected space is locally
connected.
(c) Consider Y = {0} ∪ {1/n: n ∈ N} as a subspace of (R , U). Use Y to show that a continuous image of a locally connected space need not be locally connected even if the function is a bijection.
Hint: The set N ∪ {0} is discrete in (R , U). A similar argument used in part
(a) could be used to show that Y is not locally connected.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Exercise 1.9.52. Give an example of a path connected space which is not locally path connected
Exercise 1.9.52. Give an example of a path connected space which is not locally path connected
Topic: Calculus 3 / Differential Equation Q1) Let (x0, y0, z0) be a point on the...
Topic: Calculus 3 / Differential Equation Q1) Let (x0, y0, z0) be a point on the curve C described by the following equations F1(x,y,z)=c1 , F2(x,y,z)=c2 . Show that the vector [grad F1(x0, y0, z0)] X [grad F2(x0, y0, z0)] is tangent to C at (x0, y0, z0) Q2) (I've posted this question before but nobody answered, so please do) Find a vector tangent to the space circle x2 + y2 + z2 = 1 , x + y +...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
1. Suppose that ? is a finite dimensional vector space over R. Show that if ???(?...
1. Suppose that ? is a finite dimensional vector space over R. Show that if ???(? ) is odd, then every ? ∈ L(? ) has an eigenvalue. (Hint: use induction). (please provide a detailed proof) 2. Suppose that ? is a finite dimensional vector space over R and ? ∈ L(? ) has no eigenvalues. Prove that every ? -invariant subspace of ? has even dimension.
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
1. A function + : S × S → S for a set S is said...
1. A function + : S × S → S for a set S is said to provide an associative binary operation on S if r + (s + t) = (r + s) +t for all r, s, t ∈ S. Show that any associative binary operation + on a set S can have at most one “unit” element, i.e. an element u ∈ S such that (*) s + u = s = u + s for all...
Uncorrelated and Gaussian does not imply independent unless jointly Gaussian. Let X ∼N(0,1) and Y =...
Uncorrelated and Gaussian does not imply independent unless jointly Gaussian. Let X ∼N(0,1) and Y = WX, where p(W = −1) = p(W = 1) = 0 .5. It is clear that X and Y are not independent, since Y is a function of X. a. Show Y ∼N(0,1). b. Show cov[X,Y ]=0. Thus X and Y are uncorrelated but dependent, even though they are Gaussian. Hint: use the definition of covariance cov[X,Y]=E [XY] −E [X] E [Y ] and...
1. (a) Y1,Y2,...,Yn form a random sample from a probability distribution with cumulative distribution function FY...
1. (a) Y1,Y2,...,Yn form a random sample from a probability distribution with cumulative distribution function FY (y) and probability density function fY (y). Let Y(1) = min{Y1,Y2,...,Yn}. Write the cumulative distribution function for Y(1) in terms of FY (y) and hence show that the probability density function for Y(1) is fY(1)(y) = n{1−FY (y)}n−1fY (y). [8 marks] (b) An engineering system consists of 5 components connected in series, so, if one components fails, the system fails. The lifetimes (measured in...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT