Question

Show that a triangular matrix is normal if and only if it is diagonal. Please use...

Show that a triangular matrix is normal if and only if it is diagonal. Please use clear, intelligable writing.

Homework Answers

Answer #1


Thumbs up please.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that if A is an (n × n) upper triangular matrix or lower triangular matrix,...
Show that if A is an (n × n) upper triangular matrix or lower triangular matrix, its eigenvalues are the entries on its main diagonal. (You may limit yourself to the (3 × 3) case.)
A triangular matrix is called unit triangular if it is square and every main diagonal element...
A triangular matrix is called unit triangular if it is square and every main diagonal element is a 1. (a) If A can be carried by the gaussian algorithm to row-echelon form using no row interchanges, show that A = LU where L is unit lower triangular and U is upper triangular. (b) Show that the factorization in (a) is unique.
THEOREM (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of...
THEOREM (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is upper triangular. (c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero. (d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix...
Prove: Why must every upper triangular matrix with no zero entries on the main diagonal be...
Prove: Why must every upper triangular matrix with no zero entries on the main diagonal be nonsingular? (Linear Algebra)
show that a real 2x2 matrix is normal if and only if it is either symmetric...
show that a real 2x2 matrix is normal if and only if it is either symmetric or has the form a b -b a (in matrix form)
Consider the proposed matrix factorization: A = LS, where L is lower triangular with 1’s on...
Consider the proposed matrix factorization: A = LS, where L is lower triangular with 1’s on the diagonal, and S is symmetric. (a) Show how the LU decomposition can be used to derive this factorization. (b) What conditions must A satisfy for this factorization to exist?
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix,...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix, and also have the same eigenvectors (but not necessarily the same eigenvalues), then  AB=BA.
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
Prove that if an m x m matrix A is upper-triangular, then A-1 is also upper-triangular....
Prove that if an m x m matrix A is upper-triangular, then A-1 is also upper-triangular. Hint: Obtain Axj=ej where xj is the jth column of A-1 and ej is the jth column of I. Then use back substitution to argue that xij = 0 for i > j.
Show that for each nonsingular n x n matrix A there exists a permutation matrix P...
Show that for each nonsingular n x n matrix A there exists a permutation matrix P such that P A has an LR decomposition. [note: A factorization of a matrix A into a product A=LR of a lower (left) triangular matrix L and an upper (right) triangular matrix R is called an LR decomposition of A.]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT