Question

Prove that 22^?+24?−10 is divisible by 18 for natural numbers ?>0. BY INDUCTION METHOD PLEASE

Prove that 22^?+24?−10 is divisible by 18 for natural numbers ?>0.

BY INDUCTION METHOD PLEASE

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by 8.
Using the method of induction proof, prove: If m and n are natural numbers, then so...
Using the method of induction proof, prove: If m and n are natural numbers, then so are n + m and nm.
Prove by induction that if a and b are natural numbers, then a + b and...
Prove by induction that if a and b are natural numbers, then a + b and ab are also natural numbers.
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in detail trying to learn.
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n...
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n >= 0.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n. b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S. c) Prove using strong induction that every natural number n > 1 is divisible by a prime.
Use the principle of Mathematics Induction to prove that for all natural numbers 3^(3n)-26n-1 is a...
Use the principle of Mathematics Induction to prove that for all natural numbers 3^(3n)-26n-1 is a multiple of 169.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT