Question

the exponential function that can be described as e^x = (1 + x/n)^n in the limit...

the exponential function that can be described as e^x = (1 + x/n)^n in the limit as n -> infinity through positive integers. calculate approximation to e^(i pi) by choosing n=10. Make sure you write down the values of (i pi)/n and (1 + (i pi)/n) as well as your final answer of (1 + (i pi)/n)n. How close is your answer to -1?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
:The exponential function f(x) = e x dominates any ”power of x” function as x increases...
:The exponential function f(x) = e x dominates any ”power of x” function as x increases to infinity. That is lim x k e x = 0 for every positive value k. Use the power series given below to verify this fact. e x = 1 + x + x 2 2! + x 3 3! + x 4 4! + x 5 5! + ...
Consider the following exponential probability density function. f(x) = (1)/(5)e−x/5    for x ≥ 0 (a) Write...
Consider the following exponential probability density function. f(x) = (1)/(5)e−x/5    for x ≥ 0 (a) Write the formula for P(x ≤ x0). (b) Find P(x ≤ 3). (Round your answer to four decimal places.) (c) Find P(x ≥ 5). (Round your answer to four decimal places.) (d) Find P(x ≤ 7). (Round your answer to four decimal places.) (e) Find P(3 ≤ x ≤ 7). (Round your answer to four decimal places.)
sketch a neat, piecewise function with the following instruction: 1. as x approach infinity, the limit...
sketch a neat, piecewise function with the following instruction: 1. as x approach infinity, the limit of the function approaches an integer other than zero. 2. as x approaches a positive integer, the limit of the function does not exist. 3. as x approaches a negative integer, the limit of the function exists. 4. Must include one horizontal asymtote and one vertical asymtote.
Consider the function f (x) = x/(2x+1)*2 . (i) Find the domain of this function. (Start...
Consider the function f (x) = x/(2x+1)*2 . (i) Find the domain of this function. (Start by figuring out any forbidden values!) (ii) Use (i) to write the equation of the vertical asymptote for this function. (iii) Find the limits as x goes to positive and negative infinity, (iv) Find the derivative of this function. (v) Find the coordinates at point A(..,…), where the x-coordinate is 1. Use exact fractions, never a decimal estimate. (vi) Find the equation of the...
The Taylor series for the function arcsin(x)arcsin⁡(x) about x=0x=0 is equal to ∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1.∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1. For this question,...
The Taylor series for the function arcsin(x)arcsin⁡(x) about x=0x=0 is equal to ∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1.∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1. For this question, recall that 0!=10!=1. a) (6 points) What is the radius of convergence of this Taylor series? Write your final answer in a box. b) (4 points) Let TT be a constant that is within the radius of convergence you found. Write a series expansion for the following integral, using the Taylor series that is given. ∫T0arcsin(x)dx∫0Tarcsin⁡(x)dx Write your final answer in a box. c)...
(a) Show that the function f(x)=x^x is increasing on (e^(-1), infinity) (b) Let f(x) be as...
(a) Show that the function f(x)=x^x is increasing on (e^(-1), infinity) (b) Let f(x) be as in part (a). If g is the inverse function to f, i.e. f and g satisfy the relation x=g(y) if y=f(x). Find the limit lim(y-->infinity) {g(y)ln(ln(y))} / ln(y). (Hint : L'Hopital's rule)
Write a function called TaylorSin.m that takes as input an array x, and positive integer N,...
Write a function called TaylorSin.m that takes as input an array x, and positive integer N, and returns the Nth Taylor polynomial approximation of sin(x), centered at a = 0. The first line of your code should read function s = TaylorSin(x,N) HINT: in computing k!, use kfact = k*(k-1)*kfact since you are counting by 2
Find a general term (as a function of the variable n) for the sequence{?1,?2,?3,?4,…}={45,1625,64125,256625,…}{a1,a2,a3,a4,…}={45,1625,64125,256625,…}. Find a...
Find a general term (as a function of the variable n) for the sequence{?1,?2,?3,?4,…}={45,1625,64125,256625,…}{a1,a2,a3,a4,…}={45,1625,64125,256625,…}. Find a general term (as a function of the variable n) for the sequence {?1,?2,?3,?4,…}={4/5,16/25,64/125,256/625,…} an= Determine whether the sequence is divergent or convergent. If it is convergent, evaluate its limit. (If it diverges to infinity, state your answer as inf . If it diverges to negative infinity, state your answer as -inf . If it diverges without being infinity or negative infinity, state your answer...
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using...
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using the Taylor Remainder Theorem, find all values of x for which this approximation is within 0.00054 of the right answer. Assume for simplicity that we limit ourselves to |x|≤1. |x|≤ = 2. Use the appropriate substitutions to write down the first four nonzero terms of the Maclaurin series for the binomial:   (1+7x)^1/4 The first nonzero term is:     The second nonzero term is:     The third...
Sigma n=1 to infinite (-1)^n sin(pi/n) I confuse about this alternative test I know this function...
Sigma n=1 to infinite (-1)^n sin(pi/n) I confuse about this alternative test I know this function F(x) = sin(pi/n) should be decreasing for all n value. but it is not decreasing when n =1 , n=2 but the answer is convergent. so how I figure out this one, is it okay to ignore when n is 1 or 2? then why? cause the condition said, Function must be decreasing for all n value.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT