Question

:The exponential function f(x) = e x dominates any ”power of x” function as x increases...

:The exponential function f(x) = e x dominates any ”power of x” function as x increases to infinity. That is lim x k e x = 0 for every positive value k. Use the power series given below to verify this fact. e x = 1 + x + x 2 2! + x 3 3! + x 4 4! + x 5 5! + ...

Homework Answers

Answer #1

12

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find a power series representation for the function. f(x)=x^3/(x-8)^2 f(x)=SIGMA n=0 to infinity Determine the radius...
Find a power series representation for the function. f(x)=x^3/(x-8)^2 f(x)=SIGMA n=0 to infinity Determine the radius of convergence Use a Maclaurin series in this table to obtain the Maclaurin series for the given function f(x)=xcos(2x)
Let f(x) be a function that is continuous for all real numbers and assume all the...
Let f(x) be a function that is continuous for all real numbers and assume all the intercepts of f, f' , and f” are given below. Use the information to a) summarize any and all asymptotes, critical numbers, local mins/maxs, PIPs, and inflection points, b) then graph y = f(x) labeling all the pertinent features from part a. f(0) = 1, f(2) = 0, f(4) = 1 f ' (2) = 0, f' (x) < 0 on (−∞, 2), and...
(a) Show that the function f(x)=x^x is increasing on (e^(-1), infinity) (b) Let f(x) be as...
(a) Show that the function f(x)=x^x is increasing on (e^(-1), infinity) (b) Let f(x) be as in part (a). If g is the inverse function to f, i.e. f and g satisfy the relation x=g(y) if y=f(x). Find the limit lim(y-->infinity) {g(y)ln(ln(y))} / ln(y). (Hint : L'Hopital's rule)
f(x) =x2 -x use f'(x)=lim h->0 f(x+h) - f(x)/h find: 1. f '(x) 2. f '(2)...
f(x) =x2 -x use f'(x)=lim h->0 f(x+h) - f(x)/h find: 1. f '(x) 2. f '(2) 3. Find the equation of a tangent line to the given function at x=2 4. f ' (-3) 5. Find the equation of a tangent line to the given function at x=-3
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5...
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5 0 1 < x < infinity elsewhere 2. The probability density function of X is f(x). F(1.5)=___________ f(x) = {(1/2)x^3 - (3/8)x^2 0 0 < x < 2 elsewhere   3. F(x) is the distribution function of X. Find the probability density function of X. Give your answer as a piecewise function. F(x) = {3x^2 - 2x^3 0 0<x<1 elsewhere
Find the power series expansion for f(x) = x^2 e^(x^2) centered at a = 0 and...
Find the power series expansion for f(x) = x^2 e^(x^2) centered at a = 0 and centered at a=-3
Problem 1: Find a non-zero function f so that f'(x) = 3f(x). The exponential function f(x)...
Problem 1: Find a non-zero function f so that f'(x) = 3f(x). The exponential function f(x) = e^x has the property that it is its own derivative. (d/dx) e^x = e^x f(x) = e^(3x) f '(x) = e^(3x) * (d/dx) 3x = e^(3x) * 3 = 3e^(3x) = 3 f(x) Problem 2: Let f be your function from Problem 1. Show that if g is another function satisfying g'(x) = 3g(x), then g(x) = A f(x) for some constant A????
sketch the graph of one and only one function that satisfies all the conditions listed below:...
sketch the graph of one and only one function that satisfies all the conditions listed below: a. f(-x) = -f(x) b. lim as x approaches 4- f(x)= infinity c.lim as x approaches 4+ f(x)=-infinity d. Limit as x approaches infinity f(x)=2 e. the second derivative of f(x) >0 on the interval (0,4)
Find a power series representation for the function. f(x) = ln(5 − x) f(x) = ln(5)...
Find a power series representation for the function. f(x) = ln(5 − x) f(x) = ln(5) + ∞ (−1)nn​(x5​)n n = 0 Determine the radius of convergence, R. R =
7. (a) Sketch a graph of a function f(x) that satisfies all of the following conditions....
7. (a) Sketch a graph of a function f(x) that satisfies all of the following conditions. i. f(2) = 3 and f(1) = −1 ii. lim x→−4 f(x) = −∞ iii. limx→∞ f(x) = 1 iv. lim x→−∞ f(x) = −2 v. lim x→−1+ f(x) = ∞ vi. lim x→−1− f(x) = −∞ vii. f 0 (x) > 0 on (−4, −3.5) ∪ (−2.5, −1.5) ∪ (1, 2) ∪ (2, ∞) viii. f 0 (x) < 0 on (−∞, −4)...