Use Table A to find the proportion of observations from a standard Normal distribution that satisfies each of the following statements. In each case, sketch a standard Normal curve and shade the area under the curve that is the answer to the question. (Round your answers to four decimal places.) (a) z < −0.46 (b) z > −0.46 (c) z < 1.65 (d) −0.46 < z < 1.65
Here is Table A
TABLE A Standard Normal cumulative proportions z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007 3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110 2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170 1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451 0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483 0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859 0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
(a) z < −0.46
using excel function NORMSDIST(z)
setting z = -0.46
we get
proportion = NORMSDIST(-0.46)
= 0.3228
(b) z > −0.46
using excel function NORMSDIST(z)
setting z = -0.46
we get
proportion = 1- NORMSDIST(-0.46) .......(subtracting from 1 for right tailed)
=1- 0.3228
= 0.6772
(c) z < 1.65
using excel function NORMSDIST(z)
setting z = 1.65
we get
proportion = NORMSDIST(1.65)
= 0.9505
(d) −0.46 < z < 1.65
proportion = P(z<1.65) - P(z<-0.46)
using the proportion values calculated in above parts, we get
Required proportion = 0.9505 - 0.3228
= 0.6278
Get Answers For Free
Most questions answered within 1 hours.