Question

A random sample of 51 adult coyotes in a region of northern Minnesota showed the average...

A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.01 years, with sample standard deviation s = 0.76 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01.

(a) What is the level of significance?


State the null and alternate hypotheses.

H0: μ < 1.75 yr; H1: μ = 1.75 yrH0: μ = 1.75 yr; H1: μ < 1.75 yr    H0: μ > 1.75 yr; H1: μ = 1.75 yrH0: μ = 1.75 yr; H1: μ ≠ 1.75 yrH0: μ = 1.75 yr; H1: μ > 1.75 yr


(b) What sampling distribution will you use? Explain the rationale for your choice of sampling distribution.

The standard normal, since the sample size is large and σ is unknown.The standard normal, since the sample size is large and σ is known.    The Student's t, since the sample size is large and σ is known.The Student's t, since the sample size is large and σ is unknown.


What is the value of the sample test statistic? (Round your answer to three decimal places.)


(c) Estimate the P-value.

<P-value > 0.2500.100 < P-value < 0.250    0.050 < P-value < 0.1000.010 < P-value < 0.050P-value < 0.010


Sketch the sampling distribution and show the area corresponding to the P-value.


(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α?

At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant.    At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.


(e) Interpret your conclusion in the context of the application.

There is sufficient evidence at the 0.01 level to conclude that coyotes in the specified region tend to live longer than 1.75 years.There is insufficient evidence at the 0.01 level to conclude that coyotes in the specified region tend to live longer than 1.75 years

Homework Answers

Answer #1

a)

0.01. is the level of significance

H0: μ = 1.75 yr; H1: μ > 1.75 yr

b)

The Student's t, since the sample size is large and σ is unknown.

Test statistic,
t = (xbar - mu)/(s/sqrt(n))
t = (2.01 - 1.75)/(0.76/sqrt(51))
t = 2.443


c)

P-value Approach
P-value = 0.0091

P-value < 0.010
As P-value < 0.01, reject the null hypothesis.


d)

At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant

e)
There is sufficient evidence at the 0.01 level to conclude that coyotes in the specified region tend to live longer than 1.75 years.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 1.99 years, with sample standard deviation s = 0.70 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.03 years, with sample standard deviation s = 0.80 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
A random sample of 46 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 46 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.03 years, with sample standard deviation s = 0.76 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 51 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.03 years, with sample standard deviation s = 0.80 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
A random sample of 41 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 41 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.05 years, with sample standard deviation s = 0.78 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
A random sample of 41 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 41 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.09 years, with sample standard deviation s = 0.88 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
A random sample of 46 adult coyotes in a region of northern Minnesota showed the average...
A random sample of 46 adult coyotes in a region of northern Minnesota showed the average age to be x = 2.05 years, with sample standard deviation s = 0.84 years. However, it is thought that the overall population mean age of coyotes is μ = 1.75. Do the sample data indicate that coyotes in this region of northern Minnesota tend to live longer than the average of 1.75 years? Use α = 0.01. (a) What is the level of...
The price to earnings ratio (P/E) is an important tool in financial work. A random sample...
The price to earnings ratio (P/E) is an important tool in financial work. A random sample of 14 large U.S. banks (J. P. Morgan, Bank of America, and others) gave the following P/E ratios.† 24 16 22 14 12 13 17 22 15 19 23 13 11 18 The sample mean is x ≈ 17.1. Generally speaking, a low P/E ratio indicates a "value" or bargain stock. Suppose a recent copy of a magazine indicated that the P/E ratio of...
A random sample of 36 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 36 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 14 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 13.5. (a) Is it appropriate to use a Student's t distribution? Explain. Yes, because the x distribution is mound-shaped and symmetric and σ is unknown.No, the x distribution is skewed left.    No, the x distribution...
A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 11 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 10.5. (a) Is it appropriate to use a Student's t distribution? Explain. Yes, because the x distribution is mound-shaped and symmetric and σ is unknown.No, the x distribution is skewed left.    No, the x distribution...