Question

A machine at Katz Steel Corporation makes 5-inch-long nails. The probability distribution of the lengths of...

A machine at Katz Steel Corporation makes 5-inch-long nails. The probability distribution of the lengths of these nails is approximately normal with a mean of 5 inches and a standard deviation of 0.12 inch. The quality control inspector takes a sample of 36 nails once a week and calculates the mean length of these nails. If the mean of this sample is either less than 4.95 inches or greater than 5.05 inches, the inspector concludes that the machine needs an adjustment. What is the probability that based on a sample of 36 nails, the inspector will conclude that the machine needs an adjustment?

Round your answer to 4 decimal places.

Probability =

Homework Answers

Answer #1

Here, μ = 5, σ = 0.02, x1 = 4.95 and x2 = 5.05. We need to compute P(4.95<= X <= 5.05). The corresponding z-value is calculated using Central Limit Theorem

z = (x - μ)/σ
z1 = (4.95 - 5)/0.02 = -2.5
z2 = (5.05 - 5)/0.02 = 2.5

Therefore, we get
P(4.95 <= X <= 5.05) = P((5.05 - 5)/0.02) <= z <= (5.05 - 5)/0.02)
= P(-2.5 <= z <= 2.5) = P(z <= 2.5) - P(z <= -2.5)
= 0.9938 - 0.0062
= 0.9876

probability = 1 - 0.9876 = 0.0124

Ans : 0.0124

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A machine at Katz Steel Corporation makes 5-inch-long nails. The probability distribution of the lengths of...
A machine at Katz Steel Corporation makes 5-inch-long nails. The probability distribution of the lengths of these nails is approximately normal with a mean of 5 inches and a standard deviation of 0.12 inch. The quality control inspector takes a sample of 25 nails once a week and calculates the mean length of these nails. If the mean of this sample is either less than 4.95 inches or greater than 5.05 inches, the inspector concludes that the machine needs an...
A machine at Katz Steel Corporation makes 5-inch-long nails. The probability distribution of the lengths of...
A machine at Katz Steel Corporation makes 5-inch-long nails. The probability distribution of the lengths of these nails is approximately normal with a mean of 5 inches and a standard deviation of 0.10 inch. The quality control inspector takes a sample of 16 nails once a week and calculates the mean length of these nails. If the mean of this sample is either less than 4.94 inches or greater than 5.06 inches, the inspector concludes that the machine needs an...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality...
The lengths of 3-inch nails manufactured on a machine are normally distributed with a mean of...
The lengths of 3-inch nails manufactured on a machine are normally distributed with a mean of 3.0 inches and a standard deviation of 0.009 inch. The nails that are either shorter than 2.981 inches or longer than 3.019 inches are unusable. What percentage of all the nails produced by this machine are unusable? The answer I was getting was 1.9652 and that is wrong.
steel factory produces iron rods that are supposed to be 36 inches long. The machine that...
steel factory produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of these rods vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. According to design, the standard deviation of the lengths of all rods produced on this machine is always equal to .05 inches. The quality control department...