Question

Consider the following linear programming problem: Maximize 40 X1 + 30 X2 + 60X3 Subject to:...

Consider the following linear programming problem: Maximize 40 X1 + 30 X2 + 60X3 Subject to: X1 + X2 + X3 ≥ 90 12 X1 + 8 X2 + 10 X3 ≤ 1500 X1 = 20 X3 ≤ 100 X1 , X2 , X3 ≥ 0 How many slack, surplus, and artificial variables would be necessary if the simplex algorithm were used to solve this problem?

Homework Answers

Answer #1

If you have a ≤-constraint, then you have to add a slack variable for each constraint.

If you have a =-constraint, then you do not have to add a slack variable for each constraint. But you have to add an artificial variable for each constraint.

If you have a ≥-constraint, then you have to substract a slack variable for each constraint. Additionally you have to add an artificial variable for each constraint.

Ans :

Number of slack = 2

Number of surplus = 1

Number of artificial = 1+1 = 2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1...
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1 - x2 + 3x3 ≤   4             2x1 + x2           ≤ 10             x1 - x2 -    x3 ≤   7 and       x1 ≥ 0,   x2 ≥ 0,    x3 ≥ 0. Use Excel Solver to solve this problem. Write out the augmented form of this problem by introducing slack variables. Work through the simplex method step by step in tabular form to solve the problem.
Consider the following linear programming problem Maximize $1 X1 + $3 X2 Subject To X1 +...
Consider the following linear programming problem Maximize $1 X1 + $3 X2 Subject To X1 + X2 ≤ 4 Constraint A X1 - X2 ≤ 1 Constraint B X1, X2 ≥ 0 Constraint C Note: Report two digits after the decimal point. Do NOT use thousands-separators (,) 1 - Which of the following is the correct standard maximization form for the above linear programming problem Answer CorrectNot Correct Answer CorrectNot Correct Answer CorrectNot Correct Answer CorrectNot Correct Z - X1...
Consider the following linear programming problem. Maximize        6X1 + 4X2 Subject to:                     &nbs
Consider the following linear programming problem. Maximize        6X1 + 4X2 Subject to:                         X1 + 2X2 ≤ 16                         3X1 + 2X2 ≤ 24                         X1  ≥ 2                         X1, X2 ≥ 0 Use Excel Solver to find the optimal values of X1 and X2. In other words, your decision variables: a. (10, 0) b. (12, 2) c. (7, 5) d. (0, 10)
Maximize 12X1 + 10X2 + 8X3             Total Profit Subject to      X1 + X2 + X3 >...
Maximize 12X1 + 10X2 + 8X3             Total Profit Subject to      X1 + X2 + X3 > 160        At least a total of 160 units of all three products needed                  X1 + 3X2 + 2X3 ≤ 450         Resource 1                  2X1 + X2 + 2X3 ≤ 300         Resource 2                2X1 + 2X2 + 3X3 ≤ 400         Resource 3                   And X1, X2, X3 ≥ 0 Where X1, X2, and X3 represent the number of units of Product 1, Product...
Consider the following linear programming optimization problem: min z = x1 - x2 + x3 x1...
Consider the following linear programming optimization problem: min z = x1 - x2 + x3 x1 + 2x2 - x3 ≤ 3 - x1 + x2 + x3 ≥ 2 x1 - x2 = 10 x1 ≥ 0, x2 ≥ 0 Convert the problem into a standard maximum problem and then write its dual form. Please write the answer clearly and legibly
solve the linear programming problem below using the simplex method. show all work of simplex method,...
solve the linear programming problem below using the simplex method. show all work of simplex method, including initial simplex tableau. Identify pivot column/row and row operations performed to pivot. Maximize z= 2x1+5x2 subject to 5x1+x2<=30 5x1+2x2<=50 x1+x2<=40 x1, x2 >=0
2. Solve the linear programming problem by the simplex method. Maximize 40x + 30y subject to...
2. Solve the linear programming problem by the simplex method. Maximize 40x + 30y subject to the constraints: x+y≤5 −2x + 3y ≥ 12 x ≥ 0, y ≥ 0
For the following linear programming problem:    Maximize 2x1+ 3x2    Such that        x1+ x2...
For the following linear programming problem:    Maximize 2x1+ 3x2    Such that        x1+ x2 ≤ 4      5x1+ 3x2 ≤15       x1,x2 ≥ 0 Graph the region that satisfies the constraints. Find the optimal solution and the value of the objective function at the optimal solution.
Solve the following linear programming model graphically and explain the solution result. Maximize Z = 60x1...
Solve the following linear programming model graphically and explain the solution result. Maximize Z = 60x1 + 90x2 Subject to 60x1 + 30x2 <= 1500 100x1 + 100x2 >= 6000 x2 >= 30 x1, x2 >= 0
Solve the following linear program using the simplex method. If the problem is two dimensional, graph...
Solve the following linear program using the simplex method. If the problem is two dimensional, graph the feasible region, and outline the progress of the algorithm. Minimize Z = 3X1 – 2X2 – X3 Subject to 4X1 + 5X2 – 2X3 ≤ 22                     X1 – 2X2 + X3 ≤ 30                     X1, X2, X3 ≥ 0