Question

A random sample of high school seniors took a literacy test before graduation. A comparison of...

A random sample of high school seniors took a literacy test before graduation. A comparison of scores for the test showed that women scored significantly higher on average (p-value = 0.017) than men on the literacy test. What does the p-value in this statement tell us?

If there were actually no difference in the mean literacy scores for all men and women at the high school, the probability of observing a difference between the two group means as large or larger than we did is only 0.017. T

he probability that the mean literacy score for women who are high school seniors is lower than for men who are high school seniors is only 0.017.

In only 7.7% of all possible samples of high school seniors, the mean literacy score for women will be lower than for men, indicating statistical significance.

Only 1.7% of women have a mean literacy score as low or lower than men; the remaining 98.3% scored higher than men.

Homework Answers

Answer #1

p - value represents the probability of observing the difference as extreme as the sample mean differences assuming that null hypothesis is true i.e. there is no difference in the population means. Hence,

p - value indicates us If there were actually no difference in the mean literacy scores for all men and women at the high school, the probability of observing a difference between the two group means as large or larger than we did is only 0.017.

Option A is correct.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6.18 ACT scores of high school seniors. The scores of your state’s high school seniors on...
6.18 ACT scores of high school seniors. The scores of your state’s high school seniors on the ACT college entrance examination in a recent year had mean m 5 22.3 and standard deviation s 5 6.2. The distribution of scores is only roughly Normal. (a) What is the approximate probability that a single student randomly chosen from all those taking the test scores 27 or higher?(b) Now consider an SRS of 16 students who took the test. What are the...
A random sample of 12 high school seniors took a standardized mathematics test and made scores:...
A random sample of 12 high school seniors took a standardized mathematics test and made scores: 78, 78, 65, 77, 65, 81, 83, 59, 76, 75, 83, 59 Past scores at the same high school have been Normally distributed with LaTeX: \sigma σ =9.3 Is this sample evidence at the α =0.01 level that the average test score for all students is less than 75? State the hypotheses and calculate a test statistic and P-value in order to answer the...
The mean quantitative score on a standardized test for female​ college-bound high school seniors was 550...
The mean quantitative score on a standardized test for female​ college-bound high school seniors was 550 The scores are approximately Normally distributed with a population standard deviation of 50 A scholarship committee wants to give awards to​ college-bound women who score at the 96TH percentile or above on the test. What score does an applicant​ need? Complete parts​ (a) through​ (g) below.The mean quantitative score on a standardized test for female​ college-bound high school seniors was 550 The scores are...
At a local high school, 5000 juniors and seniors recently took an aptitude test. The results...
At a local high school, 5000 juniors and seniors recently took an aptitude test. The results of the test were normally distributed with a Mean of 450 and a Standard Deviation of 50. Calculate the following: The percent of students to the nearest tenth that scored over 525 The number of students that scored more than 475. The probability of a student selected at random, having scored between 400 and 575.
Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500 high school seniors in...
Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500 high school seniors in the state of Texas are collected, and the sample mean and standard deviation are found to be 501 and 112, respectively. Find a 99% confidence interval on the mean SAT mathematics score for seniors in the state of Texas.
According to the U.S. Department of Education, 1,026,000 high school seniors (rounded to the nearest thousand)...
According to the U.S. Department of Education, 1,026,000 high school seniors (rounded to the nearest thousand) took the ACT test as part of the college admissions process. The mean composite score was 21.1 with a standard deviation of 4.8. The ACT composite score ranges from 1 to 36, with higher scores indicating greater achievement in high school. An admissions officer wants to find what percentage of samples of 50 students will have a mean ACT score less than 19.6. What...
The scores for all high school seniors taking the verbal section of the school list at...
The scores for all high school seniors taking the verbal section of the school list at the tutors in a particular year had a mean of 490 and a standard deviation of 100. The distribution of SAT scores is bell shaped. a)what percentage of seniors score between 390 and 590 on the SAT test? b) One student score 795 on the test. How did the student do compared to the rest of the scores? c) A rather exclusive university only...
In A high school, the average score of 12 male students was 87.25, the standard deviation...
In A high school, the average score of 12 male students was 87.25, the standard deviation was 9.6, and the average score of eight female students was 97.25, the standard deviation was 3.65. Use a 0.10 signing level. (a) Is there a difference in the scores of men and women in this school? (b) Do women in this school score higher than men? (Describe it in the following way. Ho, Ha, critical value, test value, P value)
One year, many college-bound high school seniors in the U.S. took the Scholastic Aptitude Test (SAT)....
One year, many college-bound high school seniors in the U.S. took the Scholastic Aptitude Test (SAT). For the verbal portion of this test, the mean was 425 and the standard deviation was 110. Based on this information: a) What proportion scored 500 or above? Draw the picture! b) What proportion of the students would be expected to score between 350 and 550? Draw the picture.
One year, many college-bound high school seniors in the U.S. took the Scholastic Aptitude Test (SAT)....
One year, many college-bound high school seniors in the U.S. took the Scholastic Aptitude Test (SAT). For the verbal portion of this test, the mean was 425 and the standard deviation was 110. Based on this information: a) What proportion scored 500 or above? Draw the picture! b) What proportion of the students would be expected to score between 350 and 550? Draw the picture. Type Everything Please
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT