***PYTHON***
CSV:
OrderDate | Region | Rep | Merchandise | Units | Unit Cost | Total |
9/1/2014 | Central | Smith | Desk | 2 | 125 | 250 |
6/17/2015 | Central | Kivell | Desk | 5 | 125 | 625 |
9/10/2015 | Central | Gill | Pencil | 7 | 1.29 | 9.03 |
11/17/2015 | Central | Jardine | Binder | 11 | 4.99 | 54.89 |
10/31/2015 | Central | Andrews | Pencil | 14 | 1.29 | 18.06 |
2/26/2014 | Central | Gill | Pen | 27 | 19.99 | 539.73 |
10/5/2014 | Central | Morgan | Binder | 28 | 8.99 | 251.72 |
12/21/2015 | Central | Andrews | Binder | 28 | 4.99 | 139.72 |
2/9/2014 | Central | Jardine | Pencil | 36 | 4.99 | 179.64 |
8/7/2015 | Central | Kivell | Pen Set | 42 | 23.95 | 1,005.90 |
1/15/2015 | Central | Gill | Binder | 46 | 8.99 | 413.54 |
1/23/2014 | Central | Kivell | Binder | 50 | 19.99 | 999.5 |
9/27/2015 | West | Sorvino | Pen | 76 | 1.99 | 151.24 |
Mean | 48.97619 | 20.3086 | 443.0819 | |||
Median | 51.5 | 4.99 | 255.84 | |||
Mode | 7 | 4.99 | 449.1 |
Using Python and Pandas complete the following questions:
The CSV data is provided above. Please use pandas and python for this question and provide the code.
# import pandas library
import pandas as pd
# creating file handler in
# read mode for
# our sample.csv file.
file_handler = open("sample.csv", "r")
# creating a Pandas DataFrame
# using read_csv function
# that reads from the sample.csv file.
data = pd.read_csv(file_handler, sep = ",")
# closing the file handler
file_handler.close()
#recode
merchandise = {'Desk':1, 'Pencil':2, 'Binder':3, 'Pen':4, 'Pen Set':5}
#printing variables
print(merchandise)
# traversing through dataframe
# Merchandise column and writing
# values where key matches
data.Merchandise = [merchandise[item] for item in data.Merchandise]
#print only the Merchandise column.
print(data['Merchandise'])
#print the whole csv file
print(data)
Get Answers For Free
Most questions answered within 1 hours.