Consider the following data:
x | 44 | 55 | 66 | 77 | 88 |
---|---|---|---|---|---|
P(X=x) | 0.20. | 0.10 | 0.30. | 0.20. | 0.20. |
Copy Data
Step 1 of 5:
Find the expected value E(X). Round your answer to one decimal place.
Step 2 of 5: Find the variance
Step 3 of 5: Find the standard deviation
Step 4 of 5: Find the value of P(X>5). Round your answer to one decimal place.
Step 5 of 5:
Step 5 of 5: Find the value of P(X<6). Round your answer to one decimal place.
We need to find P(X>5) and P(X<6) so assuming x takes values as 4,5,6,7,8 and not 44,55,66,77,88
x | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|
P(X=x) | 0.20. | 0.10 | 0.30. | 0.20. |
0.20. |
1) E(X) = sum(p(x)*x)
= 0.20*4 + 0.10*5 + 0.30*6 + 0.20*7 + 0.20*8
= 6.1
2) Variance = E(X^2) - (E(X))^2
= (0.20*4^2 + 0.10*5^2 + 0.30*6^2 + 0.20*7^2 + 0.20*8^2) - (6.1)^2
= 1.89
3)
Standard deviation = sqrt(Variance)
= sqrt(1.89) = 1.37
4)
P(X > 5) = P(X = 6) + P(X =7) + P(X=8)
= 0.3 + 0.2 + 0.2
= 0.7
6) P(X < 6) = P(X=4) + P(X=5)
= 0.2 + 0.1
= 0.3
Get Answers For Free
Most questions answered within 1 hours.