Question

Consider two binomial distributions, each have n=15 trials. The first distribution has the probability of success...

Consider two binomial distributions, each have n=15 trials. The first distribution has the probability of success of each trial with p1=0.80 and the second distribution has the probability of success of each trial with p2=0.24. What do you observe about these two binomial distributions?

Select one:

a. The first binomial distribution will have a lower expected value than the second binomial distribution.

b. The shape of the first binomial distribution is skewed right, while the second binomial distribution is skewed left.

c. The shape of the first binomial distribution is skewed left, while the second binomial distribution is skewed right.

d. Adding all the individual probabilities for each binomial distribution will not add up to 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. In a binomial distribution with 9 trials and a success probability of 0.4, what would...
a. In a binomial distribution with 9 trials and a success probability of 0.4, what would be the probability of a success on every trial? Round to 4 decimal places. b. In a binomial distribution with 12 trials and a success probability of 0.6, what would be the probability of a success on every trial? Round to 4 decimal places. c. A binomial distribution has a success probability of 0.7, and 10 trials. What is the probability (rounded to 4...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 60 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 60 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 85 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ.(a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. The...
A binomial experiment consists of 800 trials. The probability of success for each trial is 0.4....
A binomial experiment consists of 800 trials. The probability of success for each trial is 0.4. What is the probability of obtaining 300?-325 ?successes? Approximate the probability using a normal distribution.? (This binomial experiment easily passes the? rule-of-thumb test for approximating a binomial distribution using a normal? distribution, as you can check. When computing the? probability, adjust the given interval by extending the range by 0.5 on each? side.)
The main difference between hypergeometric and binomial distributions is that, with the hypergeometric distribution, the _____....
The main difference between hypergeometric and binomial distributions is that, with the hypergeometric distribution, the _____. Select one: a. trials are independent of each other b. probability of success must be less than .5 c. probability of success changes from trial to trial d. random variable is continuous
Assume that a procedure yields a binomial distribution with n trials and the probability of success...
Assume that a procedure yields a binomial distribution with n trials and the probability of success for one trial is p. Use the given values of n and p to find the mean μ and standard deviation σ. ​Also, use the range rule of thumb to find the minimum usual value μ−2σ and the maximum usual value μ+2σ. n=1405, p= 2 / 5
Consider a binomial experiment with n = 6 trials where the probability of success on a...
Consider a binomial experiment with n = 6 trials where the probability of success on a single trial is p = 0.45. (For each answer, enter a number. Round your answers to three decimal places.) (a) Find P(r = 0). (b) Find P(r ≥ 1) by using the complement rule
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT