Question

For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...

For one binomial experiment,

n1 = 75

binomial trials produced

r1 = 45

successes. For a second independent binomial experiment,

n2 = 100

binomial trials produced

r2 = 65

successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ.(a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.)


(b) Check Requirements: What distribution does the sample test statistic follow? Explain.

The Student's t. The number of trials is sufficiently large.The Student's t. We assume the population distributions are approximately normal.     The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal.


(c) State the hypotheses.

H0: p1 = p2; H1: p1 > p2H0: p1 = p2; H1: p1p2     H0: p1 = p2; H1: p1 < p2H0: p1 < p2; H1: p1 = p2


(d) Compute p̂1 - p̂2.
1 - p̂2 =  

Compute the corresponding sample distribution value. (Test the difference p1p2. Do not use rounded values. Round your final answer to two decimal places.)


(e) Find the P-value of the sample test statistic. (Round your answer to four decimal places.)


(f) Conclude the test.

At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.     At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.


(g) Interpret the results.

Fail to reject the null hypothesis, there is insufficient evidence that the probabilities of success for the two binomial experiments differ.Reject the null hypothesis, there is insufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.     Reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.Fail to reject the null hypothesis, there is sufficient evidence that the proportion of the probabilities of success for the two binomial experiments differ.

Homework Answers

Answer #1

(f) At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant

(g) Fail to reject the null hypothesis, there is insufficient evidence that the probabilities of success for the two binomial experiments differ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Compute p̂1 - p̂2. p̂1 - p̂2 = (c) Compute the...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (d) Compute p̂1 - p̂2. p̂1 - p̂2 = Compute the corresponding sample distribution value. (Test the difference p1 − p2. Do not use rounded values. Round your final answer...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Compute p̂1 - p̂2. p̂1 - p̂2 =   (c)Compute the corresponding...
A random sample of 50 binomial trials resulted in 20 successes. Test the claim that the...
A random sample of 50 binomial trials resulted in 20 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (e) Do you reject or fail to reject H0? Explain. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.    At the α =...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. Yes, np and nq are both greater than 5.No, np and nq are both less than 5.    No, np is greater than 5, but nq is less than 5.Yes, np and nq are both less than 5.No, nq...
A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the...
A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. No, nq is greater than 5, but np is less than 5.Yes, np and nq are both greater than 5.    No, np is greater than 5, but nq is less than 5.No, np and nq are both less...
A random sample of n1 = 150 people ages 16 to 19 were taken from the...
A random sample of n1 = 150 people ages 16 to 19 were taken from the island of Oahu, Hawaii, and 14 were found to be high school dropouts. Another random sample of n2 = 137people ages 16 to 19 were taken from Sweetwater County, Wyoming, and 5 were found to be high school dropouts. Do these data indicate that the population proportion of high school dropouts on Oahu is different (either way) from that of Sweetwater County? Use a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT