Question

A game show offers contestants the following chance to win a car: There are three doors....

A game show offers contestants the following chance to win a car: There are three doors. A car is hidden behind one door, and goats are hidden behind each of the other doors. The contestant selects a door. The game show host then opens one of the doors not chosen to reveal a goat (there are two goats, so there is always such a door to open). At this point, the contestant is given the opportunity to stand pat (do nothing) or to choose the remaining door. Suppose you are the contestant, and suppose you prefer the expensive sports car over a not-so-expensive goat as your prize. What do you do?

(a) Suppose you decide to stand with your original choice. What are your chances of winning the car?

(b) Suppose you decide to switch to the remaining door. What are your chances of winning the car?

(c) Suppose you decide to flip a fair coin. If it comes up heads, you change your choice, otherwise, you stand pat. What are your chances of winning the car?

Homework Answers

Answer #1

a)let you choose door 1 and host opens door 2

P(host opens door 2)

=P(prize behind door 1)*P(host opens door 2|prize behind door 1)+P(prize behind door 3)*P(host opens door 2|prize behind door 3)

=(1/3)*(1/2)+(1/3)*(1) =1/2

hence P(prize behind door 1 given host opens door 2)=P(chance if winnining the car with original choice)

=P(prize behind door 1)*P(host opens door 2|prize behind door 1)/P(host opens door 2)

=(1/3)*(1/2)/(1/2)=1/3

b)chances of winning the car by switching

=P(prize behind door 3)*P(host opens door 2|prize behind door 3)/P(host opens door 2)

=(1/3)*(1)/(1/2)=2/3

c)

P(chance of winnning )=P(heads)*P(change and win)+P(tails)*P(stay pat and wins)=(1/2)*(2/3)+(1/2)*(1/3)=1/2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose you’re on a game show, and you’re given the choice of three doors. Behind one...
Suppose you’re on a game show, and you’re given the choice of three doors. Behind one door is a car, behind the others, goats. You pick a door, say number 1, and the host, who knows what’s behind the doors. Opens another door, say number 3, which has a goat. He says to you, “Do you want to pick door number 2?” Is it to your advantage to switch your choice of doors?
Suppose Monty Hall wants to make his game show more interesting. In the new version, there...
Suppose Monty Hall wants to make his game show more interesting. In the new version, there are 7 doors and 2 cars behind the doors. The other 5 doors have goats behind them. A contestant picks a door. Monty Hall opens 3 of the doors with goats behind them (never the door that the contestant picked or a door with a car). The contestant then has the choice of switching doors.find the probability that the contestant wins a car if...
(Monty Hall problem) Suppose you’re on a game show, and you’re given the choice of three...
(Monty Hall problem) Suppose you’re on a game show, and you’re given the choice of three doors, say Door 1, Door 2, and Door 3. Behind one door there is a car; behind the others, goats. Assume it is equally likely that the car is behind any door, i.e., P(D1) = P(D2) = P(D3). You will win whatever is behind the door you choose. (a) If you pick Door 1, what is your probability of winning the car? [2 point]...
You are a contestant on a game show. There are three doors, labeled A, B, and...
You are a contestant on a game show. There are three doors, labeled A, B, and C. Behind two of the doors are prizes worth nothing, and behind the third door is a prize worth $10,000. The game show host knows which door contains the valued prize, but you don’t. You get first move, at which time you must choose one of the three doors. The game show host gets the second move, at which time he must open one...
1) The Monty Hall problem is a counter-intuitive statistics puzzle: - There are 3 doors, behind...
1) The Monty Hall problem is a counter-intuitive statistics puzzle: - There are 3 doors, behind which are two goats and a car. - You pick a door (call it door 1). You’re hoping for the car of course. - Monty Hall, the game show host, examines the other doors (2 & 3) and opens one with a goat. (If both doors have goats, he picks randomly.) Here’s the game: Do you stick with door A (original guess) or switch...
Assume that you are on a game show, and are called on stage to play a...
Assume that you are on a game show, and are called on stage to play a game. The game involves three closed doors, behind two doors there is nothing and behind the third door is a prize. The host asks you to pick one door, and you will win behind it. However, once you have chosen the door, the host does something strange. The host opens one of the remaining two doors and shows you there is nothing behind the...
In the Monty Hall problem we had three doors, car behind a randomly chosen door, contes-...
In the Monty Hall problem we had three doors, car behind a randomly chosen door, contes- tant chooses a door with no knowledge of where the car is, host opens a door di erent from the contestant's choice, but an empty one chosen at random among the available empty, unselected doors. Then the contestant is asked if she wants to switch her choice to the remaining door. We saw in class that if the contestant switches, the probability of winning...
Suppose you are on a TV show. There are three doors: A, B, and C. Behind...
Suppose you are on a TV show. There are three doors: A, B, and C. Behind only one of the door, there is a new car. If you pick the correct door, the car belongs to you. Suppose you pick a door, then the compere opens another door and shows that there is no car behind that door. The compere then asks you if you want to stick to your door, or switch to the other remaining unopened door. Does...
Monty Hall Problem. A prize is equally likely to be found behind one of three doors....
Monty Hall Problem. A prize is equally likely to be found behind one of three doors. You choose a door and one of the other two remaining door opens. If the prize is not behind the opened door, you can stick to your initial choice or you can switch to the unopened door. You win the prize if it is behind your final door choice. There are three instances: Stick to your initial choice Switch to the other unopened door...
Penalty Worksheet – Due 10-19            Simpson’s Paradox     Name______________________________ Instructions:You must show your work and all work must be...
Penalty Worksheet – Due 10-19            Simpson’s Paradox     Name______________________________ Instructions:You must show your work and all work must be organized and easy to follow. You will have to make an appointment with me to discuss your work. You will not receive credit if you cannot adequately explain your work to me in person. 1) A manager is evaluating two baseball players based upon their batting averages (the proportion of the time that they get a hit when they come to bat). Russell has...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT