Question

The marketing manager of a firm that produces laundry products decides to test market a new...

The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 17 supermarkets from Region 1 had mean sales of 81.9 with a standard deviation of 7.3. A random sample of 13 supermarkets from Region 2 had a mean sales of 87 with a standard deviation of 7.2. Does the test marketing reveal a difference in potential mean sales per market in Region 2? Let μ1 be the mean sales per market in Region 1 and μ2 be the mean sales per market in Region 2. Use a significance level of α=0.1 for the test. Assume that the population variances are not equal and that the two populations are normally distributed. Step 1 of 4: State the null and alternative hypotheses for the test.

Step 2 of 4:

Compute the value of the t test statistic. Round your answer to three decimal places.

Step 3 of 4:

Determine the decision rule for rejecting the null hypothesis H0H0. Round your answer to three decimal places.

Step 4 of 4:

State the test's conclusion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 1717 supermarkets from Region 1 had mean sales of 86.286.2 with a standard deviation of 88. A random sample of 1313 supermarkets from Region 2 had a mean sales...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 12 supermarkets from Region 1 had mean sales of 79.2 with a standard deviation of 7.2. A random sample of 17 supermarkets from Region 2 had a mean sales...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 1212 supermarkets from Region 1 had mean sales of 79.279.2 with a standard deviation of 7.27.2. A random sample of 1717 supermarkets from Region 2 had a mean sales...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 17 supermarkets from Region 1 had mean sales of 86.2 with a standard deviation of 8. A random sample of 13 supermarkets from Region 2 had a mean sales...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 12 supermarkets from Region 1 had mean sales of 72.4 with a standard deviation of 6.2. A random sample of 16 supermarkets from Region 2 had a mean sales...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 18 18 supermarkets from Region 1 had mean sales of 87.1 87.1 with a standard deviation of 6.5 6.5 . A random sample of 12 12 supermarkets from Region...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 12 supermarkets from Region 1 had mean sales of 84 with a standard deviation of 6.6. A random sample of 17 supermarkets from Region 2 had a mean sales...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 12 12 supermarkets from Region 1 had mean sales of 81.4 81.4 with a standard deviation of 8.4 8.4 . A random sample of 17 17 supermarkets from Region...
The marketing manager of a firm that produces laundry products decides to test market a new...
The marketing manager of a firm that produces laundry products decides to test market a new laundry product in each of the firm's two sales regions. He wants to determine whether there will be a difference in mean sales per market per month between the two regions. A random sample of 16 supermarkets from Region 1 had mean sales of 82.5 with a standard deviation of 6.4. A random sample of 12 supermarkets from Region 2 had a mean sales...
Two teaching methods and their effects on science test scores are being reviewed. A random sample...
Two teaching methods and their effects on science test scores are being reviewed. A random sample of 11 students, taught in traditional lab sessions, had a mean test score of 78.1 with a standard deviation of 3. A random sample of 19 students, taught using interactive simulation software, had a mean test score of 84.1 with a standard deviation of 5.9. Do these results support the claim that the mean science test score is lower for students taught in traditional...