Question

A large manufacturing plant uses lightbulbs with lifetimes that are normally distributed with a mean of...

A large manufacturing plant uses lightbulbs with lifetimes that are normally distributed with a mean of 1400 hours and a standard deviation of 70 hours. To minimize the number of bulbs that burn out during operating hours, all bulbs are replaced at once. How often should the bulbs be replaced so that no more than 1% burn out between replacement periods? (Round your answer to one decimal place.)

Homework Answers

Answer #1

First, we need to find the probability P( z less than or equal to 0.01 or 1%)

Using the standard normal table, we get the value P(z less than or equal to 0.01 or 1%) = -2.32

now, we have the z value, mean value and the standard deviation.

Using the formula

setting the given values, we get

multiplying both sides by 70, we get

-2.32*70 = (x-1400)

-162.4 = x-1400

adding 1400 on both sides, this gives

1400 - 162.4 = x - 1400 + 1400

x = 1237.6 hours

So, we need to replace bulbs after 1237.6 hours

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean...
A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean 195 hours. Whenever a bulb burns out, it is replaced. Let T be the time of the first bulb replacement. Let XiXi , i = 1, . . . , 5, be the lifetimes of the five bulbs. Assume the lifetimes of the bulbs are independent. Find P(T ≤ 100). Find P( X1X1 > 100 and   X2X2 > 100 and • • • and...
Each year, a large warehouse uses thousands of fluorescent light bulbs that are burning 24 hours...
Each year, a large warehouse uses thousands of fluorescent light bulbs that are burning 24 hours per day until they burn out and are replaced. The lifetime of the bulbs, X, is a normally distributed random variable with mean 620 hours and standard deviation 20 hours. (a) If a light bulb is randomly selected, how likely its lifetime is less than 582 hours? (b) The warehouse manager orders a shipment of 500 light bulbs each month. How many of the...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this information, answer the following question. What proportion of light bulbs will last between 59 and 61 hours? (4 decimals) What is the probablity that a randomly selected light bulb lasts less than 45 hours? (4 decimals)
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 51 hours or​ less? ​(c) What proportion of light bulbs will last between 58 and 61 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56 hours and a standard deviation of 3.2 hours. With this​ information, answer the following questions. ​ (a) What proportion of light bulbs will last more than 60 ​hours? ​(b) What proportion of light bulbs will last 52 hours or​ less? ​(c) What proportion of light bulbs will last between 59 and 62 ​hours? ​ (d) What is the probability that a randomly selected light...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 51 hours or​ less? ​(c) What proportion of light bulbs will last between 59 and 62 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 51 hours or​ less? ​(c) What proportion of light bulbs will last between 58 and 62 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
The lifetimes of a certain brand of LED light bulbs are normally distributed with a mean...
The lifetimes of a certain brand of LED light bulbs are normally distributed with a mean of 53,400 hours and a standard deviation of 2500 hours. A. If the company making these light bulbs claimed that they would last at least 50,000 hours. What proportion of light bulbs would meet the claim and last at least 50,000 hours? (12) B. The company’s marketing director wants the claimed figure to be where 98% of these new light bulbs to last longer...
.The lifetimes of a certain brand of LED light bulbs are normally distributed with a mean...
.The lifetimes of a certain brand of LED light bulbs are normally distributed with a mean of 53,400 hours and a standard deviation of 2500 hours.A.If the company making these light bulbs claimed that they would last at least 50,000 hours. What proportion of light bulbs would meet the claim and last at least 50,000 hours? (12)B.The company’s marketing director wants the claimed figure to be where 98% of these new light bulbs to last longer than the amount claimed...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56 hours and a standard deviation of 3.2 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 50 hours or​ less? ​(c) What proportion of light bulbs will last between 58 and 62 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT