Question

A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean...

A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean 195 hours. Whenever a bulb burns out, it is replaced. Let T be the time of the first bulb replacement. Let XiXi , i = 1, . . . , 5, be the lifetimes of the five bulbs. Assume the lifetimes of the bulbs are independent.

Find P(T ≤ 100).

Find P( X1X1 > 100 and   X2X2 > 100 and • • • and   X5X5 > 100)

Find the mean of T .

Homework Answers

Answer #1

Answer:

Find P( X1 > 100 and   X2 > 100 and • • • and   X5 > 100) :

Find P(T ≤ 100) :

Find the mean of T :

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A basement uses two light bulbs. On average, a light bulb lasts 22 days, exponentially distributed....
A basement uses two light bulbs. On average, a light bulb lasts 22 days, exponentially distributed. When a light bulb burns out, it takes an average of 2 days, exponentially distributed before it is replaced. a. Construct the rate diagram for this three-state birth-death system. b. Find the steady-state probability distribution of the number of working lights.
The lifetime of a light bulb in a certain application is normally distributed with mean =...
The lifetime of a light bulb in a certain application is normally distributed with mean = 1000 hours and a standard deviation = 100 hours. A) What is the probability that a lightbulb will last more than 1100 hours? B) Find the 10th percentile of the lifetimes C) What is the probability that the lifetime of a light bulb is between 900 and 1100 hours?
The lifetime of a regular bulb is exponentially distributed with a mean of 25 days. What...
The lifetime of a regular bulb is exponentially distributed with a mean of 25 days. What is the probability that you will need to replace the bulb in your room for five times in the year of 2020? (There are 365 days in 2020.)
A large manufacturing plant uses lightbulbs with lifetimes that are normally distributed with a mean of...
A large manufacturing plant uses lightbulbs with lifetimes that are normally distributed with a mean of 1400 hours and a standard deviation of 70 hours. To minimize the number of bulbs that burn out during operating hours, all bulbs are replaced at once. How often should the bulbs be replaced so that no more than 1% burn out between replacement periods? (Round your answer to one decimal place.)
Each year, a large warehouse uses thousands of fluorescent light bulbs that are burning 24 hours...
Each year, a large warehouse uses thousands of fluorescent light bulbs that are burning 24 hours per day until they burn out and are replaced. The lifetime of the bulbs, X, is a normally distributed random variable with mean 620 hours and standard deviation 20 hours. (a) If a light bulb is randomly selected, how likely its lifetime is less than 582 hours? (b) The warehouse manager orders a shipment of 500 light bulbs each month. How many of the...
10-One has 100 light bulbs whose lifetimes are independent exponentials with mean 5 hours. If the...
10-One has 100 light bulbs whose lifetimes are independent exponentials with mean 5 hours. If the bulbs are used one at a time, with a failed bulb being replaced immediately by a new one, a)Approximate the probability that there is still a working bulb after 525 hours. Use Central Limit Theorem to find the probability that sum of life of 100 bulbs is greater than 525 hours. Answer: 0.3085 b)Suppose it takes a random time, uniformly distributed over (0, .5)...
The life of light bulbs is distributed normally. The variance of the lifetime is 400 and...
The life of light bulbs is distributed normally. The variance of the lifetime is 400 and the mean lifetime of a bulb is 530 hours. Find the probability of a bulb lasting for at least 552 hours. Round your answer to four decimal places.
The life of light bulbs is distributed normally. The variance of the lifetime is 625 and...
The life of light bulbs is distributed normally. The variance of the lifetime is 625 and the mean lifetime of a bulb is 570 hours. Find the probability of a bulb lasting for at least 599 hours. Round your answer to four decimal places.
The life of light bulbs is distributed normally. The variance of the lifetime is 225 and...
The life of light bulbs is distributed normally. The variance of the lifetime is 225 and the mean lifetime of a bulb is 520 hours. Find the probability of a bulb lasting for at most 533 hours. Round your answer to four decimal places.
A light bulb manufacturer wants to compare the mean lifetimes of two of its light bulbs,...
A light bulb manufacturer wants to compare the mean lifetimes of two of its light bulbs, model A and model B. Independent random samples of the two models were taken. Analysis of 11 bulbs of model A showed a mean lifetime of 1361hours and a standard deviation of 83 hours. Analysis of 15 bulbs of model B showed a mean lifetime of 1304 hours and a standard deviation of 81hours. Assume that the populations of lifetimes for each model are...