Question

Let X, Y ∼ U[0, 1], be independent and let Z = max{X, Y }. (a)...

Let X, Y ∼ U[0, 1], be independent and let Z = max{X, Y }. (a) (10 points) Calculate Pr[Z ≤ a]. (b) (10 points) Calculate the density function of Z. (c) (5 points) Calculate V ar(Z).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X U (0, 1) and Y exp (1) be independent variables (v.a.’s) independent. What is...
Let X U (0, 1) and Y exp (1) be independent variables (v.a.’s) independent. What is the function probability density (f.d.p.) of the v.a. Z = X + Y?
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent variables. Let Z =...
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent variables. Let Z = X+Y, and joint density of Y and Z is expressed as f(y, z) = g(z|y)*h(y) g(z|y) is conditional distribution of Z given y, and h(y) is density of Y how can i get f(y, z)?
Let X and Y be independent; each is uniformly distributed on [0, 1]. Let Z =...
Let X and Y be independent; each is uniformly distributed on [0, 1]. Let Z = X + Y. Find: E[Z|X]. Your answer should be a function of x.
Let U and V be two independent standard normal random variables, and let X = |U|...
Let U and V be two independent standard normal random variables, and let X = |U| and Y = |V|. Let R = Y/X and D = Y-X. (1) Find the joint density of (X,R) and that of (X,D). (2) Find the conditional density of X given R and of X given D. (3) Find the expectation of X given R and of X given D. (4) Find, in particular, the expectation of X given R = 1 and of...
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and...
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and V = X + Y . Show your Work. (a) Derive the joint density for (U, V ). (b) What is the marginal distribution for U? (c) Find the conditional mean E(X | V = 2). (d) Are U and V independent? Explain why
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v;...
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v; w); z = z(u; v; w). To calculate ∂s ∂u (u = 1, v = 2, w = 3), which of the following pieces of information do you not need? I. f(1, 2, 3) = 5 II. f(7, 8, 9) = 6 III. x(1, 2, 3) = 7 IV. y(1, 2, 3) = 8 V. z(1, 2, 3) = 9 VI. fx(1, 2, 3)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b) Find the joint cumulative density function of (X,Y) c) Find the marginal pdf of X and Y. d) Find Pr[Y<X2] and Pr[X+Y>0.5]
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { e −x−y , 0 < x, y < ∞ 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y .