Question

Let U and V be two independent standard normal random variables, and let X = |U|...

Let U and V be two independent standard normal random variables, and let X = |U| and Y = |V|.

Let R = Y/X and D = Y-X.

(1) Find the joint density of (X,R) and that of (X,D).

(2) Find the conditional density of X given R and of X given D.

(3) Find the expectation of X given R and of X given D.

(4) Find, in particular, the expectation of X given R = 1 and of X given D=0.

(5) Why the two answers of (4) are different.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X +...
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X + Y and V = Y . (a) Find the joint PDF of U and V (b) Find the marginal PDF of U.
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
Let ? and ? be two independent random variables with uniform distribution. ?(? = 0|? =...
Let ? and ? be two independent random variables with uniform distribution. ?(? = 0|? = ?, ? = ?) = 1 − ?, ?(? = 1|? = ?, ? = ?) = ?(1 − ?) and ?(? = 2|? = ?, ? = ?) = ??. 1. Find the conditional joint p.d.f. (the posterior) ??,?|?=?. 2.Write down the conditional expectation ?[?|? = ?] and ?[?|? = ?] as functions of ?.
The joint probability density function of two random variables X and Y is f(x, y) =...
The joint probability density function of two random variables X and Y is f(x, y) = 4xy for 0 < x < 1, 0 < y < 1, and f(x, y) = 0 elsewhere. (i) Find the marginal densities of X and Y . (ii) Find the conditional density of X given Y = y. (iii) Are X and Y independent random variables? (iv) Find E[X], V (X) and covariance between X and Y .
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and...
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and V = X + Y . Show your Work. (a) Derive the joint density for (U, V ). (b) What is the marginal distribution for U? (c) Find the conditional mean E(X | V = 2). (d) Are U and V independent? Explain why
Q1) The joint probability density function of the random variables X and Y is given by...
Q1) The joint probability density function of the random variables X and Y is given by ??,? (?, ?) = { ?, 0 < ? < ? < 1 0, ??ℎ?????? a) Find the constant ? b) Find the marginal PDFs of X and Y. c) Find the conditional PDF of X given Y, i.e., ?(?|?) d) Find the variance of X given Y, i.e., ???(?|?) e) Are X and Y statistically independent? Explain why.
Let U1, U2, . . . , Un be independent U(0, 1) random variables. (a) Find...
Let U1, U2, . . . , Un be independent U(0, 1) random variables. (a) Find the marginal CDFs and then the marginal PDFs of X = min(U1, U2, . . . , Un) and Y = max(U1, U2, . . . , Un). (b) Find the joint PDF of X and Y .
Let ? and ? be two independent random variables with uniform distribution. ?(? = 0|? =...
Let ? and ? be two independent random variables with uniform distribution. ?(? = 0|? = ?, ? = ?) = 1 − ?, ?(? = 1|? = ?, ? = ?) = ?(1 − ?) and ?(? = 2|? = ?, ? = ?) = ??. 1.Write down the conditional expectation ?[?|? = ?] and ?[?|? = ?] as functions of ?.
If X and Y are independent exponential random variables, each having parameter λ  =  4, find...
If X and Y are independent exponential random variables, each having parameter λ  =  4, find the joint density function of U  =  X + Y  and  V  =  e 3X. The required joint density function is of the form fU,V (u, v)  =  { g(u, v) u  >  h(v), v  >  a 0 otherwise (a) Enter the function g(u, v) into the answer box below. (b) Enter the function h(v) into the answer box below. (c) Enter the value...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT