Question

Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { e −x−y , 0 < x, y < ∞ 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y .

Answer #1

Let X and Y be a random variables with the joint probability
density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for
x > 0 0, otherwise }. compute the marginal probability density
functions fX(x) and fY (y). Are the random variables X and Y
independent?.

Consider the random variables X and Y with the following joint
probability density function:
fX,Y (x, y) = xe-xe-y, x > 0, y
> 0
(a) Suppose that U = X + Y and V = Y/X. Express X and Y in terms of
U and V .
(b) Find the joint PDF of U and V .
(c) Find and identify the marginal PDF of U
(d) Find the marginal PDF of V
(e) Are U and V independent?

The joint probability density function of two random variables
(X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( −
y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C.
(b) Find the marginal density of Y . What type of distribution does
Y follow? (c) Find the conditional density of X | Y . What type of
distribution is this?

* The random variables X and Y have a joint density function
given by fX,Y(x, y) = ⇢ 1/y, 0 < y < 1, 0 < x < y, 0,
otherwise. Compute (a) Cov(X,Y) and (b) Corr(X,Y).

1. Let (X; Y ) be a continuous random vector with joint
probability density function
fX;Y (x, y) =
k(x + y^2) if 0 < x < 1 and 0 < y < 1
0 otherwise.
Find the following:
I: The expectation of XY , E(XY ).
J: The covariance of X and Y , Cov(X; Y ).

Let X and Y be two continuous random variables with joint
probability density function
f(x,y) =
6x 0<y<1, 0<x<y,
0 otherwise.
a) Find the marginal density of Y .
b) Are X and Y independent?
c) Find the conditional density of X given Y = 1 /2

Let X and Y be two continuous random variables with joint
probability density function f(x,y) = xe^−x(y+1), 0 , 0< x <
∞,0 < y < ∞ otherwise
(a) Are X and Y independent or not? Why?
(b) Find the conditional density function of Y given X = 1.(

For continuous random variables X and Y with joint probability
density function. f(x,y) = xe−(x+y) when x > 0 and y
> 0 f(x,y) = 0 otherwise
a. Find the conditional density F xly (xly)
b. Find the marginal probability density function fX (x)
c. Find the marginal probability density function fY (y).
d. Explain if X and Y are independent

4. Let X and Y be random variables having joint probability
density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and
0 < y < 1
(a) Find the marginal density fY (y).
(b) Show that the marginal density, fY (y), integrates to 1
(i.e., it is a density.)
(c) Find fX|Y (x|y), the conditional density of X given Y =
y.
(d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...

Suppose that the joint probability density function of the
random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤
x ≤ 1, 0 ≤ y ≤ 1 0 otherwise.
(a) Sketch the region of non-zero probability density and show
that c = 3/ 2 .
(b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1).
(c) Compute the marginal density function of X and Y...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 10 minutes ago

asked 10 minutes ago

asked 16 minutes ago

asked 16 minutes ago

asked 16 minutes ago

asked 17 minutes ago

asked 24 minutes ago

asked 34 minutes ago

asked 35 minutes ago

asked 35 minutes ago

asked 36 minutes ago

asked 37 minutes ago