Question

Let X_1, ..., X_n be a random sample from a normal distribution, N(0, theta). Is theta_hat...

Let X_1, ..., X_n be a random sample from a normal distribution, N(0, theta). Is theta_hat a UMVUE of theta?

The above question is from chapter 9 problem 23b of Introduction to Probability and Mathematical Statistics (for which you have a solution posted on this website). I'm confused about the part in the posted solution where we go from the line that says E(x^4 -2\theta * E(x^2) + E(\theta^2) to the line that says (3\theta^2-2\theta^2+\theta^2). Could you please explain this to me?

Homework Answers

Answer #1

so basically

we need to show

Z^2 follow chi-square distribution

hence

=2 + 1

= 3

hence

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) =...
Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) = (2/theta)*x*e^(-x^2/theta) for x greater or equal to zero. Find the Maximum Likelihood Estimator Theta-Hat_1 for theta. Find the Method of Moment Estimator Theta-Hat_2 for theta.
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) =...
Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) = (2/theta)*x*e^(-x^2/theta) for x greater or equal to zero. Determine if Theta-Hat_1 (MLE) is a minimum variance unbiased estimator for thet Determine if Theta-Hat_2 (MOM) is a minimum variance unbiased estimator for theta.
Let X1, X2 be a sample of size 2 from the Gamma (Alpha=2, Lamba = 1/theta)...
Let X1, X2 be a sample of size 2 from the Gamma (Alpha=2, Lamba = 1/theta) distribution X1 = Gamma = x/(theta^2) e^(-x/theta) Derive the joint pdf of Y1=X1 and Y2 = X1+X2 Derive the conditional pdf of Y1 given Y2=y2. Can you name that conditional distribution? It might not have name
Let X1. ..., Xn, be a random sample from Exponential(β) with pdf f(x) = 1/β(e^(-x/β)) I(0,...
Let X1. ..., Xn, be a random sample from Exponential(β) with pdf f(x) = 1/β(e^(-x/β)) I(0, ∞)(x), B > 0 where β is an unknown parameter. Find the UMVUE of β^2.
Summation from n=2 to infinity of ln(n)/n^2 * x^n a.) Let x=-1, and compute the integral...
Summation from n=2 to infinity of ln(n)/n^2 * x^n a.) Let x=-1, and compute the integral test to determine whether this it is convergent or divergent b.) Compute the ratio test to determine the interval of convergence and explain what this interval represents. I'm really confused with this problem (specifically a)- please write out all of the details of computing the integral so I can understand. Thank you!
Let X1, X2 be a random sample of size 2 from the standard normal distribution N...
Let X1, X2 be a random sample of size 2 from the standard normal distribution N (0, 1). find the distribution of {min(X1, X2)}^2
A random sample of size n=100 is taken from an infinite population with mean=75 and variance...
A random sample of size n=100 is taken from an infinite population with mean=75 and variance =256. What is the probability that x bar will fall between 67 and 83? Could you please answer this explaining the why of every step, I know the solution but don't know how I'm supposed to get there. Thank you!
1.let us suppose that a uniform, thin line of charge Q stretches from z=0 to z=L...
1.let us suppose that a uniform, thin line of charge Q stretches from z=0 to z=L on theˆz-axis. This time calculate the electric field produced by the line at a point r=xˆx forx>0. This point is not equidistant from the two ends—does the electric field have both an x and a z component there? 2. A charge q is placed at the point r=xx^ for the electric field that you calculated in the previous problem. a. What is the force...
X ~ N(50, 9). Suppose that you form random samples of 25 from this distribution. Let...
X ~ N(50, 9). Suppose that you form random samples of 25 from this distribution. Let X  be the random variable of averages. Let ΣX be the random variable of sums. A. Find the 30th percentile. (Round your answer to two decimal places.) B. find the probability. (Round your answer to four decimal places.) P(18 < X < 49) = C. Give the distribution of ΣX. D. Find the minimum value for the upper quartile for ΣX. (Round your answer to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT