Question

Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) =...

Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) = (2/theta)*x*e^(-x^2/theta) for x greater or equal to zero.

  1. Find the Maximum Likelihood Estimator Theta-Hat_1 for theta.
  2. Find the Method of Moment Estimator Theta-Hat_2 for theta.

Homework Answers

Answer #1

a) MLE :

b) Method of Moment:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) =...
Suppose X_1, X_2, … X_n is a random sample from a population with density f(x) = (2/theta)*x*e^(-x^2/theta) for x greater or equal to zero. Determine if Theta-Hat_1 (MLE) is a minimum variance unbiased estimator for thet Determine if Theta-Hat_2 (MOM) is a minimum variance unbiased estimator for theta.
Let X_1, ..., X_n be a random sample from a normal distribution, N(0, theta). Is theta_hat...
Let X_1, ..., X_n be a random sample from a normal distribution, N(0, theta). Is theta_hat a UMVUE of theta? The above question is from chapter 9 problem 23b of Introduction to Probability and Mathematical Statistics (for which you have a solution posted on this website). I'm confused about the part in the posted solution where we go from the line that says E(x^4 -2\theta * E(x^2) + E(\theta^2) to the line that says (3\theta^2-2\theta^2+\theta^2). Could you please explain this...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Suppose the random variable X has pdf f(x;?, ?)=??x?−1e−?x? for x≥0;?, ? > 0. a) Find...
Suppose the random variable X has pdf f(x;?, ?)=??x?−1e−?x? for x≥0;?, ? > 0. a) Find the maximum likelihood estimator for ?, assuming that ? is known. b) Suppose ? and ? are both unknown. Write down the equations that would be solved simultaneously to find the maximum likelihood estimators of ? and ?.
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/(xlnθ) , 1 < x < θ. a) Obtain the maximum likelihood estimator of θ, ˆθ. b) Is ˆθ a consistent estimator of θ? Justify your answer.
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
suppose we draw a random sample of size n from a Poisson distribution with parameter λ....
suppose we draw a random sample of size n from a Poisson distribution with parameter λ. show that the maximum likelihood estimator for λ is an efficient estimator
Suppose that X is a discrete random variable with ?(? = 1) = ? and ?(?...
Suppose that X is a discrete random variable with ?(? = 1) = ? and ?(? = 2) = 1 − ?. Three independent observations of X are made: (?1, ?2, ?3) = (1,2,2). a. Estimate ? through the sample mean (this is an example of the “method of moment” for estimating a parameter). b. Find the likelihood function and MLE for ?.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT