Question

We have three colored fair dies with faces labeled: - (R)ed die: 1, 1, 2, 3,...

We have three colored fair dies with faces labeled:

- (R)ed die: 1, 1, 2, 3, 3, 3

- (G)reen die: 1, 1, 1, 1, 2, 3

- (B)lue die:     1, 1, 2, 2, 3, 3

A random experiment involves the following two steps:

  • Step 1: One ball is picked randomly from a bag that contains 11 (R)ed balls, 4 (G)reen balls, and 6 (B)lue balls.
  • Step 2: Based on the color of the picked ball, the die with same color is tossed and the face on top is the outcome of the experiment.

Find the following:

  1. Find Probability that the (B)lue die is picked,
  2. Given that the (G)reen die is picked, find Probability that outcome of the experiment is 1,
  3. Find probability that the outcome of the experiment is 1 ,
  4. Given that the outcome of the experiment was 1, find Probability that the (G)reen die was picked,
  5. Find Probability that the (B)lue die is picked and the outcome of the experiment is 1.

Write the answers in the space in the following form: (a) 0.654 (b) 0.765 (c) 0.432 (d) 0.123 (e) 0.345

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Exercise 2 A box contains 3 white balls, 4 red balls and 5 black balls. A...
Exercise 2 A box contains 3 white balls, 4 red balls and 5 black balls. A ball is picked, its color recorded and returned to the box(with replacement). Another ball is then selected and its color recorded. 1. Find the probability that 2 black balls are selected. 2. Find the probability that 2 balls of the same color are selected. Now 4 balls are picked with replacement 3.Find the probability no red balls are selected. 4.Find the probability that the...
Assume we roll a fair four-sided die marked with 1, 2, 3 and 4. (a) Find...
Assume we roll a fair four-sided die marked with 1, 2, 3 and 4. (a) Find the probability that the outcome 1 is first observed after 5 rolls. (b) Find the expected number of rolls until outcomes 1 and 2 are both observed. (c) Find the expected number of rolls until the outcome 3 is observed three times. (d) Find the probability that the outcome 3 is observed exactly three times in 10 rolls given that it is first observed...
Assume we roll a fair four-sided die marked with 1, 2, 3 and 4. (a) Find...
Assume we roll a fair four-sided die marked with 1, 2, 3 and 4. (a) Find the probability that the outcome 1 is first observed after 5 rolls. (b) Find the expected number of rolls until outcomes 1 and 2 are both observed. (c) Find the expected number of rolls until the outcome 3 is observed three times. (d) Find the probability that the outcome 3 is observed exactly three times in 10 rolls given that it is first observed...
A fair die is rolled three times. We say that a match has occurred if the...
A fair die is rolled three times. We say that a match has occurred if the outcome of the first throw is 1, or the outcome of the second throw is 2, or the outcome of the third throw is 3. Find the probability of the event that a match occurs.
Question 3: Consider the following experiment: A ball is drawn from an urn containing 2 red...
Question 3: Consider the following experiment: A ball is drawn from an urn containing 2 red balls, 2 white balls and 4 blue balls. If the ball drawn is white, a fair coin is flipped and the outcome is recorded. If the ball is blue, a card is drawn from a standard (52 card) deck and the suit (club ♣, diamond ♦, heart ♥ and spade ♠, present in equal proportions in the deck) is recorded. If the ball is...
1. A box contains 3 white and 2 black balls. The white balls are labelled by...
1. A box contains 3 white and 2 black balls. The white balls are labelled by 1, 2, and 3, and the black balls by 4 and 5. A ball is randomly picked from the box. Let ? be the number shown on the picked ball, and ? = 1 if the picked ball is black; ? = 0 otherwise. Find a. ?(? = 1); b. ?(? = 4, ? = 1); c. ?(??); d. ???(?|? = 4).
Box 1 contains 2 red balls and one blue ball. Box 2 contains 3 blue balls...
Box 1 contains 2 red balls and one blue ball. Box 2 contains 3 blue balls and 1 red ball. A coin is tossed. If it falls heads up, box 1 is selected and a ball is drawn. If it falls tails up, box 2 is selected and a ball is drawn. Find the probability of selecting a red ball.
2. Consider a ten-sided die of which the sides display the numbers 1, 2, 3, and...
2. Consider a ten-sided die of which the sides display the numbers 1, 2, 3, and 4 according to this table: side of die 1 2 3 4 5 6 7 8 9 10 number displayed 1 1 1 1 2 2 2 3 3 4 Rolling two such dice is an experiment with the sample space S =       (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3)...
I have two bags. Bag 1 contains 3 green balls, while bag 2 contains 2 green...
I have two bags. Bag 1 contains 3 green balls, while bag 2 contains 2 green balls. I pick one of the bags at random, and throw 5 red balls in it. Then I shake the bag and choose 4 balls (without replacement) at random from the bag. (a) If bag 1 is picked, what is the probability that there are exactly 2 red balls among the 4 chosen balls? (b) If bag 2 is picked, what is the probability...
A fair six-sided die has two sides painted red, 3 sides painted blue and one side...
A fair six-sided die has two sides painted red, 3 sides painted blue and one side painted yellow. The die is rolled and the color of the top side is recorded. List all possible outcomes of this random experiment Are the outcomes equally likely? Explain Make a probability distribution table for the random variable X: color of the top side        2. If a pair of dice painted the same way as in problem 1 is rolled, find the probability...