Question

Exercise 2 A box contains 3 white balls, 4 red balls and 5 black balls. A...

Exercise 2 A box contains 3 white balls, 4 red balls and 5 black balls. A ball is picked, its color recorded and returned to the box(with replacement). Another ball is then selected and its color recorded.

1. Find the probability that 2 black balls are selected.

2. Find the probability that 2 balls of the same color are selected.

Now 4 balls are picked with replacement

3.Find the probability no red balls are selected.

4.Find the probability that the fourth ball selected is the first occurrence of the color white?

Homework Answers

Answer #1

Number of white balls = 3

Number of red balls = 4

Number of black balls = 5

Total number of balls = 3 + 4 + 5 = 12

1. P(2 black balls are selected) = (5/12)2

= 0.1736

2. P(2 balls of same color) = (3/12)2 + (4/12)2 + (5/12)2

= 0.3472

3. P(red ball) = 4/12 = 1/3

P(not a red ball) = 1 - 1/3 = 2/3

P(no red balls) = (2/3)4

= 0.1975

P(white) = 3/12 = 0.25

P(not white) = 1 - 0.25 = 0.75

P(fourth ball selected is the first occurrence of the color white) = P(first 3 balls are not white) x P(fourth ball is white)

= 0.753 x 0.25

= 0.1055

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Box I contains 7 red and 3 black balls; Box II contains 4 red and 5...
Box I contains 7 red and 3 black balls; Box II contains 4 red and 5 black balls. After a randomly selected ball is transferred from Box I to Box II, 2 balls are drawn from Box II without replacement. Given that the two balls are red, what is the probability a black ball was transferred?
1. A box contains 3 white and 2 black balls. The white balls are labelled by...
1. A box contains 3 white and 2 black balls. The white balls are labelled by 1, 2, and 3, and the black balls by 4 and 5. A ball is randomly picked from the box. Let ? be the number shown on the picked ball, and ? = 1 if the picked ball is black; ? = 0 otherwise. Find a. ?(? = 1); b. ?(? = 4, ? = 1); c. ?(??); d. ???(?|? = 4).
A box contains one white ball, two red balls, and three black balls. Make a box...
A box contains one white ball, two red balls, and three black balls. Make a box model. Five draws are made with replacement from the box. Find the chance that: a) A red ball is never drawn. b) A black ball appears exactly three times. c) A white ball appears at least once.
A box contains 4 red and 6 black balls. Two balls are selected one after the...
A box contains 4 red and 6 black balls. Two balls are selected one after the other, a) What is the probability that the first ball selected is black and the second ball selected is also black, if the selection is done without replacement. b) What is the probability that the first ball selected is black and the second ball selected is red, if the selection is done without replacement. c) What is the probability that the first ball selected...
Urn 1 contains 7 red balls and 3 black balls. Urn 2 contains 4 red balls...
Urn 1 contains 7 red balls and 3 black balls. Urn 2 contains 4 red balls and 1 black ball. Urn 3 contains 4 red balls and 3 black balls. If an urn is selected at random and a ball is drawn, find the probability that it will be red. enter your answer as a decimal rounded to 3 decimal places
An urn contains 1 white, 2 black, 3 red, and 4 green balls. If 6 balls...
An urn contains 1 white, 2 black, 3 red, and 4 green balls. If 6 balls are selected randomly (without replacement) and X represents the number of selections that are either red or green, find: (a) the probability mass function for X. (b) the expected value of X (calculate this value directly by using the probability mass function from part a).
Urn 1 contains 4 red balls and 3 black balls. Urn 2 contains 1 red ball...
Urn 1 contains 4 red balls and 3 black balls. Urn 2 contains 1 red ball and 3 black balls. Urn 3 contains 4 red balls and 2 black balls. If an urn is selected at random and a ball is drawn, find the probability that it will be red. Enter your answer as a fraction in simplest form or a decimal rounded to 3 decimal places. P(red)=
A box contains 8 red and 5 white balls. 8 balls are selected at random, without...
A box contains 8 red and 5 white balls. 8 balls are selected at random, without replacement. Find the probability that 3 white balls are selected.
6. A jar contains 5 red balls and 5 black balls. Two balls are successively drawn...
6. A jar contains 5 red balls and 5 black balls. Two balls are successively drawn from the jar. After the first draw the color of the ball is noted, and then the selected ball is returned to the jar together with another ball of the opposite color. In other words, if a red ball is drawn it is returned to the jar together with another black ball; if black ball is drawn it is returned to the jar together...
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains...
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains 3 red balls, 5 green balls and 2 yellow balls. Box 3 contains 2 red balls, 5 green balls and 3 yellow balls. Box 4 contains 1 red ball, 5 green balls and 4 yellow balls. Which of the following variables have a binomial distribution? (I) Randomly select three balls from Box 1 with replacement. X = number of red balls selected (II) Randomly...