Question

Using technology, roll 100 virtual dice and find the sum of their values. Do this 200...

Using technology, roll 100 virtual dice and find the sum of their values. Do this 200 times and plot the sums. What does the shape of this sampling distribution approximate? Explain the relation of the Central Limit Theorem to this problem. Organize this activity into a lesson plan format and allow the students opportunities to investigate with dice.

Homework Answers

Answer #1

we can solve this using R , as shown below

set.seed(1)
# get sum of 100 dice rolls
sum100dice <- function(){
n=100
x <- replicate(n, sample(1:6, n, replace=TRUE), simplify='vector')
sum(x==6)
}
sum100dice() #these come out as expected

sum200 <- replicate(200,sum100dice(),simplify='vector')
sum200


hist(sum200,col="red",main=" 200 times")


## increase this

sum1000 <- replicate(1000,sum100dice(),simplify='vector')

hist(sum1000,col="steelblue",main=" 1000 times")

the results are

as you increase the repetitions the shape would be closer to normal , in accordance with the central limit theorem

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT