Consider the four Galilean moons of Jupiter: Io, Europa,
Ganymede, and Callisto. Use the data below to find the average
magnitude of the gravitational force that the Jupiter exerts on
each of those moons. Use scientific notation and round the
coefficient to two decimals. See info for this homework if you're
not sure about the format.
Jupiter's mass: 1.9×1027 kg
Moon: |
Mass (kg) |
Average orbital distance from Jupiter (m) |
Io |
8.93×10 22 |
4.22×10 8 |
Europa |
4.80×10 22 |
6.71×10 8 |
Ganymede |
1.48×10 23 |
1.07×10 9 |
Callisto |
1.08×10 23 |
1.88×10 9 |
FIo = ____N
FEuropa = ____ N
FGanymede = ____ N
FCallisto = ____ N
Gravitational Force is given by:
F = G*m1*m2/R^2
m1, m2 = mass of planets/objects
R = distance between both masses
G = Gravitational constant = 6.67*10^-11
Part A.
Force between Jupiter and Io
F = G*m1*m2/R^2
m1 = mass of Jupiter = 1.9*10^27 kg
So,
F = 6.67*10^-11*1.9*10^27*8.93*10^22/(4.22*10^8)^2
F = 6.35*10^22 N
Part B
Force between Jupiter and Europa
F = G*m1*m2/R^2
m1 = mass of Jupiter = 1.9*10^27 kg
So,
F = 6.67*10^-11*1.9*10^27*4.80*10^22/(6.71*10^8)^2
F = 1.35*10^22 N
Part C.
Force between Jupiter and Ganymede
F = G*m1*m2/R^2
m1 = mass of Jupiter = 1.9*10^27 kg
So,
F = 6.67*10^-11*1.9*10^27*1.48*10^23/(1.07*10^9)^2
F = 1.64*10^22 N
Part D.
Force between Jupiter and Callisto
F = G*m1*m2/R^2
m1 = mass of Jupiter = 1.9*10^27 kg
So,
F = 6.67*10^-11*1.9*10^27*1.08*10^23/(1.88*10^9)^2
F = 3.87*10^21 N
Please Upvote.
Get Answers For Free
Most questions answered within 1 hours.