Question

Suppose you went to a fundraiser and you saw an interesting game. The game requires a...

Suppose you went to a fundraiser and you saw an interesting game. The game requires a player to select five balls from an urn that contains 1000 red balls and 4000 green balls. It costs $20 to play and the payout is as follows:

Number of red balls Prize
0 $0
1 $20
2 $25
3 $50
4 $100
5 $200

Questions:

1) Is this a binomial experiment? If so, explain what p, q, n, and x represent and find their values.

2) Someone tells you that there's 1/5 chance of getting one red ball in your 5 draws, so you can at least get your money back or win some big prizes. There's nothing to lose. Is this true? What is your expected winning in a long run? (Hint: first calculate probability of drawing 0, 1, 2, 3, 4, and 5 red balls using binomial formula and then calculate the expected value.)

Homework Answers

Answer #1

1)

This is not a binomial experiment since the probability of getting a red ball changes when each of the ball is picked up.

Probability of getting red ball in first draw = 1000/5000 = 1/5

Probability of getting red ball in second draw is dependent on the first draw

2) Let X denote the number of red red b

P(X = 0) = = 0.3275

P(X = 1) = = 0.4098

P(X = 2) = 0.20485

P(X = 3) = 0.05114

P(X = 4) = 0.00637

P(X = 5) = 0.00032

Thus, Expected winning in long run = $0*0.3275 + $20*0.4098 + $25*0.20485 + $50*0.05114 + $100*0.00637 + $200*0.00032 - $20

= $-3 .425

It's not true that there's nothing to lose

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Debra is buying prizes for a game at her school's fundraiser. The game has three levels...
Debra is buying prizes for a game at her school's fundraiser. The game has three levels of prizes, and she has already bought the second and third prizes. She wants the first prize to be nice enough to attract people to the game. The game's manufacturer has supplied her with the probabilities of winning first, second, and third prizes. Tickets cost $3 each, and she wants the school to profit an average of $1 per ticket. How much should she...
A large fast-food restaurant is having a promotional game where game pieces can be found on...
A large fast-food restaurant is having a promotional game where game pieces can be found on various products. Customers can win food or cash prizes. According to the company, the probability of winning a prize (large or small) with any eligible purchase is 0.142. Consider your next 33 purchases that produce a game piece. Calculate the following: This is a binomial distribution. Round your answers to 4 decimal places. a) What is the probability that you win 5 prizes? b)...
You play the following game against your friend. You have 2 urns and 4 balls One...
You play the following game against your friend. You have 2 urns and 4 balls One of the balls is black and the other 3 are white. You can place the balls in the urns any way that you'd like, including leaving an urn empty. Your friend will choose one urn at random and then draw a ball from that urn. ( If he chooses an empty urn, he draws nothing.) She wins if she draws the black ball and...
Beginning in October, 2015, Powerball® became an even larger combined large jackpot game and cash game....
Beginning in October, 2015, Powerball® became an even larger combined large jackpot game and cash game. Every Wednesday and Saturday night at 10:59 p.m. Eastern Time, five white balls are drawn out of a drum with 69 balls and one red ball out of a drum with 26 red balls. There are two bins—one containing white balls, and one containing red balls. When a player fills out a ticket, he or she selects five numbers from the set of white...
7. Imagine you are in a game show. There are 10 prizes hidden on a game...
7. Imagine you are in a game show. There are 10 prizes hidden on a game board with 100 spaces. One prize is worth $50, three are worth $20, and another six are worth $10. You have to pay $5 to the host if your choice is not correct. Let the random variable x be the winning. Complete the following probability distribution. (Show the probability in fraction format and explain your work) x P(x) -$5 $10 $20 $50 What is...
14. Imagine you are in a game show. There are 10 prizes hidden on a game...
14. Imagine you are in a game show. There are 10 prizes hidden on a game board with 100 spaces. One prize is worth $50, three are worth $20, and another six are worth $10. You have to pay $5 to the host if your choice is not correct. Let the random variable x be the winning. a. Complete the following probability distribution. (Show the probability in fraction format and explain your work) x P(x) -$5 $10 $20 $50 b....
Suppose a game is designed as follows. Each player that enters the game is asked to...
Suppose a game is designed as follows. Each player that enters the game is asked to draw a ball from a bag that contains 10 balls: 4 red balls, 3 blue balls and 3 green balls. Assume that the bag is not transparent so that the players cannot see the balls inside the bag when drawing. Then the player wins $5 if he draws a blue ball; the player wins $3 if he draws a red ball; the player loses...
Suppose a game is designed as follows. Each player that enters the game is asked to...
Suppose a game is designed as follows. Each player that enters the game is asked to draw a ball from a bag that contains 10 balls: 4 red balls, 3 blue balls and 3 green balls. Assume that the bag is not transparent so that the players cannot see the balls inside the bag when drawing. Then the player wins $5 if he draws a blue ball; the player wins $3 if he draws a red ball; the player loses...
I don't know how to write (iii) and want to make sure my answer is right...
I don't know how to write (iii) and want to make sure my answer is right for (i) and (ii) A prize competition operates by a machine choosing randomly (no replacement) 3 balls from 18. There are 6 red balls, 6 blue balls and 6 green balls. And for each colour the balls are numbered 1,2,3,4,5,6. There are three ways you can win: (C) you have three balls the same colour; (T) you have “top scores” meaning that the three...
I buy one of 400 raffle tickets for $20. The sponsors then randomly select 1 grand...
I buy one of 400 raffle tickets for $20. The sponsors then randomly select 1 grand prize worth $600, then 2 second prizes worth $200 each, and then 3 third prizes worth $50each. The selections are made without replacement. (a) Complete the probability distribution for this raffle. Give your probabilities as a decimal (rounded to 4 decimal places) or as a fraction. Outcomes          P(x)          Win Grand Prize     Win a Second Prize     Win a Third Prize     Win Nothing     (b) Recognizing that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT