Question

Linearity of expectations Suppose that E[Xi]=i for every i. Then, E[X1+2X2−3X3]=

Linearity of expectations

Suppose that E[Xi]=i for every i. Then,

E[X1+2X2−3X3]=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and...
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and variance Var(Xi) = σ2. Let V= X2−X3 and W = X1− 2X2 + X3. (a) Find E(V) and E(W). (b) Find Var(V) and Var(W). (c) Find Cov(V,W). (d) Find the correlation coefficient ρ(V,W). Are V and W independent?
Suppose that X1, X2, X3 are independent, have mean 0 and Var(Xi) = i. Find Cov(X1...
Suppose that X1, X2, X3 are independent, have mean 0 and Var(Xi) = i. Find Cov(X1 − X2, X2 + X3). .For X1, X2, X3,  find ρ(X1−X2, X2+ X3).
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual...
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual model b.) Given the information that the optimal basic variables are X1 and X3, determine the associated optimal dual solution.
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2...
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2 +x3 =3 Write a matrix equation that is equivalent to the system of linear equations. (b) Solve the system using the inverse of the coefficient matrix.
Linear Algebra find all the solutions of the linear system using Gaussian Elimination x1-x2+3x3+2x4=1 -x1+x2-2x3+x4=-2 2x1-2x2+7x3+7x4=1
Linear Algebra find all the solutions of the linear system using Gaussian Elimination x1-x2+3x3+2x4=1 -x1+x2-2x3+x4=-2 2x1-2x2+7x3+7x4=1
Problem 5.10.10 Suppose you have n suitcases and suitcase i holds Xi dollars where X1, X2,...
Problem 5.10.10 Suppose you have n suitcases and suitcase i holds Xi dollars where X1, X2, …, Xn are iid continuous uniform (0, m) random variables. (Think of a number like one million for the symbol m.) Unfortunately, you don’t know Xi until you open suitcase i.             Suppose you can open the suitcases one by one, starting with suitcase n and going down to suitcase 1. After opening suitcase i, you can either accept or reject Xi dollars. If...
X1, … Xn are i.i.d. random variables, and E(Xi ) = 3β, Var(Xi ) = 3β^2...
X1, … Xn are i.i.d. random variables, and E(Xi ) = 3β, Var(Xi ) = 3β^2 , i = 1 … n, β > 0. Two estimators of β are defined as β̂ 1 = (X̅ /3) β̂ 2 = (n /3n+1 ) X̅ Show that MSE(β̂ 2) < MSE(β̂ 1) for a sample size of n = 3.
Consider the following linear program Max 5x1+5x2+3x3 St x1+3x2+x3<=3 -x1+ 3x3<=2 2x1-x2 +2x3<=4 2x1+3x2-x3<=2 xi>=0 for...
Consider the following linear program Max 5x1+5x2+3x3 St x1+3x2+x3<=3 -x1+ 3x3<=2 2x1-x2 +2x3<=4 2x1+3x2-x3<=2 xi>=0 for i=1,2,3 Suppose that while solving this problem with Simplex method, you arrive at the following table: z x1 x2 x3 x4 x5 x6 x7 rhs Row0 1 0 -29/6 0 0 0 11/6 2/3 26/3 Row1 0 0 -4/3 1 0 0 1/3 -1/3 2/3 Row2 0 1 5/6 0 0 0 1/6 1/3 4/3 Row3 0 0 7/2 0 1 0 -1/2 0...
Suppose a 3x3 real matrix A=[a b c; d e f; g h i] has determinant...
Suppose a 3x3 real matrix A=[a b c; d e f; g h i] has determinant 5. What is the determinant of the 3x3 matrix B=[2a 2c 2b; 2d 2f 2e; 2g 2i 2h]?
a) Let Xi for i = 1,2,...n be random variables with E[Xi] = μi (not necessarily...
a) Let Xi for i = 1,2,...n be random variables with E[Xi] = μi (not necessarily independent). Show that E[∑ni =1 Xi] = [∑ni =1 μi]. Show from Definition b) Suppose that random variables Yi for i = 1, 2,...,n are independent and identically distributed withE[Yi] =γ(gamma) and Var[Yi] = σ2, Use part (a) to show that E[Ybar] =γ(gamma). (c) Suppose that random variables Yi for i = 1, 2,...,n are independent and identically distributed with E[Yi] =γ(gamma) and Var[Yi]...