Question

X1, … Xn are i.i.d. random variables, and E(Xi ) = 3β, Var(Xi ) = 3β^2...

X1, … Xn are i.i.d. random variables, and E(Xi ) = 3β, Var(Xi ) = 3β^2 , i = 1 … n, β > 0. Two estimators of β are defined as β̂ 1 = (X̅ /3) β̂ 2 = (n /3n+1 ) X̅

Show that MSE(β̂ 2) < MSE(β̂ 1) for a sample size of n = 3.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
   Let {Xi} be i.i.d. random variables with P(Xi=−1) = P(Xi= 1) = 1/2. Let Sn=...
   Let {Xi} be i.i.d. random variables with P(Xi=−1) = P(Xi= 1) = 1/2. Let Sn= 1 +X1+. . .+Xn be symmetric simple random walk with initial point S0 = 1. Find the probability that Sn eventually hits the point 0. Hint: Define the events A={Sn= 0 for some n} and for M >1, AM = {Sn hits 0 before hitting M}. Show that AM ↗ A.
a) Let Xi for i = 1,2,...n be random variables with E[Xi] = μi (not necessarily...
a) Let Xi for i = 1,2,...n be random variables with E[Xi] = μi (not necessarily independent). Show that E[∑ni =1 Xi] = [∑ni =1 μi]. Show from Definition b) Suppose that random variables Yi for i = 1, 2,...,n are independent and identically distributed withE[Yi] =γ(gamma) and Var[Yi] = σ2, Use part (a) to show that E[Ybar] =γ(gamma). (c) Suppose that random variables Yi for i = 1, 2,...,n are independent and identically distributed with E[Yi] =γ(gamma) and Var[Yi]...
Choose the all correct things Sn=X1+X2+...+Xn 1. E[Sn]=2n, when RV X1,...,Xn is iid and E[X]=2 2....
Choose the all correct things Sn=X1+X2+...+Xn 1. E[Sn]=2n, when RV X1,...,Xn is iid and E[X]=2 2. VAR[Sn]=3n, when RV X1,...,Xn is iid and VAR[X]=3 3. VAR[Sn]=2n is always correct, when RV X1,...,Xn is identically distributed and VAR[X]=2 4 .Sn is an Exponential distribution with a mean of 2n and a variance of 3n ,when RV X1,...,Xn is iid and E[X]=2, VAR[X]=3 Exponential distribution
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!,...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!, λ > 0, x = 0, 1, 2 a) Find MoM (Method of Moments) estimator for λ b) Show that MoM estimator you found in (a) is minimal sufficient for λ c) Now we split the sample into two parts, X1, . . . , Xm and Xm+1, . . . , Xn. Show that ( Sum of Xi from 1 to m, Sum...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with unknown α and unknown β. Find the method of moments estimators for α and β
Let X1,…, Xn be a sample of iid Gamma(?, ?) random variables with ? known and...
Let X1,…, Xn be a sample of iid Gamma(?, ?) random variables with ? known and Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) Var(? ̂). e) whether or not ? is a UMVUE of ?.
Let X1,...,Xn i.i.d. Gamma(α,β) with α > 0, β > 0 (a) Assume both α and...
Let X1,...,Xn i.i.d. Gamma(α,β) with α > 0, β > 0 (a) Assume both α and β are unknown, find their momthod of moment estimators: αˆMOM and βˆMOM. (b) Assume α is known and β is unknown, find the maximum likelihood estimation for β.
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f...
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f (x; ?1, ?2) = (1/?1)e−(x−?2)/?1 for x > ?2 and Θ = ℝ × ℝ+. a) Show that S = (X(1), ∑ni=1 Xi ) is jointly sufficient for (?1, ?2). b) Determine the pdf of X(1). c) Determine E[X(1)]. d) Determine E[X2(1) ]. e ) Is X(1) an MSE-consistent estimator of ?2? f) Given S = (X(1), ∑ni=1 Xi )is a complete sufficient statistic...
Consider the model Yi = 2 + βxi +E i , i = 1, 2, ....
Consider the model Yi = 2 + βxi +E i , i = 1, 2, . . . , n where E1, . . . , E n be a sequence of i.i.d. observations from N(0, σ2 ). and x1, . . . , xn are given constants. (i) Find MLE for β and call it β. ˆ . (ii) For a sample of size n = 7 let (x1, . . . , x7) = (0, 0, 1, 2,...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean β. (1) Find the maximum likelihood estimator of β. (2) Determine whether the maximum likelihood estimator is unbiased for β. (3) Find the mean squared error of the maximum likelihood estimator of β. (4) Find the Cramer-Rao lower bound for the variances of unbiased estimators of β. (5) What is the UMVUE (uniformly minimum variance unbiased estimator) of β? What is your reason? (6)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT