Question

the mean height of women in a country (ages 20-29) is 63.8 inches. A random sample...

the mean height of women in a country (ages 20-29) is 63.8 inches. A random sample of 60 women in this age group is selected. what is the probability that the mean height for the sample is greater than 65 inches? assume ó ?= 2.85.    

the probability that the mean height for the sample is greater than 65 inches is

Homework Answers

Answer #1

Solution :

Given that ,

mean = = 63.8

standard deviation = = 2.85

= / n = 2.85 / = 0.37

P( >65 ) = 1 - P( <65 )

= 1 - P[( - ) / < (65-63.8) /0.37 ]

= 1 - P(z <3.24 )  

= 1 - 0.9994

= 0.0006

probability=0.0006

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The mean height of women in a country​ (ages 20-29) is 63.8 inches. A random sample...
The mean height of women in a country​ (ages 20-29) is 63.8 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume sigma=2.78. The probability that the mean height for the sample is greater than 65 inches is?
The mean height of women in a country​ (ages 20-​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20-​29) is 64.2 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume sigma =2.88. The probability that the mean height for the sample is greater than 65 inches is _____. (round to 4 decimal places as needed).
The mean height of women in a country (ages 20-29) is 64.2 inches. A random sample...
The mean height of women in a country (ages 20-29) is 64.2 inches. A random sample of 55 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 inches? assume σ = 2.54
The mean height of women in a country​ (ages 20minus​29) is 63.6 inches. A random sample...
The mean height of women in a country​ (ages 20minus​29) is 63.6 inches. A random sample of 60 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume sigma=2.56. The probability that the mean height for the sample is greater than 64 inches is?
The mean height of women in a country​ (ages 20minus ​29) is 63.6 inches. A random...
The mean height of women in a country​ (ages 20minus ​29) is 63.6 inches. A random sample of 60 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume sigma equals2.84 . The probability that the mean height for the sample is greater than 64 inches is
1) The mean height of women in a country (ages 20-29) is 64.3 inches. A random...
1) The mean height of women in a country (ages 20-29) is 64.3 inches. A random sample of 75 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 inches? assume σ = 2.59 The probability that the mean height for the sample is greater than 65 inches is __. 2) Construct the confidence interval for the population mean μ C=0.95 Xbar = 4.2 σ=0.9 n=44 95% confidence...
the height of women ages 20-29 is normally distributed, with a mean of 64.8 inches. Assume...
the height of women ages 20-29 is normally distributed, with a mean of 64.8 inches. Assume ó=2.8 inches. Are you more likely to randomly select 1 woman with a height less than 66.4 inches or are you more likely to select a sample of 26 women with a mean height less than 66.4 inches? Explain. What is the probability of randomly selecting 1 woman with a height less than 66.4 inches?
The height of women ages​ 20-29 is normally​ distributed, with a mean of 65 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 65 inches. Assume sigmaσ=2.6 inches. Are you more likely to randomly select 1 woman with a height less than 67.1 inches or are you more likely to select a sample of 15 women with a mean height less than 67.1 ​inches? 1. What is the probability of randomly selecting 1 woman with a height less than 67.1 inches? ___ (Round to four decimal places as​ needed.) 2....
The height of women ages​ 20-29 is normally​ distributed, with a mean of 63.863.8 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 63.863.8 inches. Assume σ equals=2.7 inches. Are you more likely to randomly select 1 woman with a height less than 65.8 inches or are you more likely to select a sample of 20 women with a mean height less than 65.8 ​inches? Explain.
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.8 inches. Assume...
The height of women ages​ 20-29 is normally​ distributed, with a mean of 64.8 inches. Assume sigmaequals2.5 inches. Are you more likely to randomly select 1 woman with a height less than 66.4 inches or are you more likely to select a sample of 16 women with a mean height less than 66.4 ​inches? Explain.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT