Question

Suppose that X has a lognormal distribution with parameters θ = 5 and ω2=9. Determine the...

Suppose that X has a lognormal distribution with parameters θ = 5 and ω2=9. Determine the following.

  1. P(X < 500)

  1. Conditional probability that X < 1500 given that X > 1000
  1. What does the difference between the probabilities in parts (a) and (b) imply about lifetimes of lognormal random variables?

Homework Answers

Answer #1

please like if it helps me

Thank you soooo much

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
STAT 120 Suppose that X have a gamma distribution with parameters a = 2 and θ=...
STAT 120 Suppose that X have a gamma distribution with parameters a = 2 and θ= 3, and suppose that the conditional distribution of Y given X=x, is uniform between 0 and x. (1) Find E(Y) and Var(Y). (2) Find the Moment Generating Function (MGF) of Y. What is the distribution of Y?
The random variable X has a Binomial distribution with parameters n = 9 and p =...
The random variable X has a Binomial distribution with parameters n = 9 and p = 0.7 Find these probabilities: (see Excel worksheet) Round your answers to the nearest hundredth P(X < 5) P(X = 5) P(X > 5)
Suppose X and Y are independent Poisson random variables with respective parameters λ = 1 and...
Suppose X and Y are independent Poisson random variables with respective parameters λ = 1 and λ = 2. Find the conditional distribution of X, given that X + Y = 5. What distribution is this?
If X and Y are independent Binomial random variables, both with parameters n and p, calculate...
If X and Y are independent Binomial random variables, both with parameters n and p, calculate the conditional distribution of X given that X + Y = m. Can you recognize the distribution?
Suppose X, T are independent exponential random variables with parameters λX and λT . Find the...
Suppose X, T are independent exponential random variables with parameters λX and λT . Find the conditional density of X given X < T .
Suppose x has a distribution with μ = 15 and σ = 9. (a) If a...
Suppose x has a distribution with μ = 15 and σ = 9. (a) If a random sample of size n = 43 is drawn, find μx, σx and P(15 ≤ x ≤ 17). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(15 ≤ x ≤ 17) = (b) If a random sample of size n = 67 is drawn, find μx, σx and P(15 ≤ x ≤ 17). (Round σx...
Suppose x has a distribution with μ = 11 and σ = 9. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 9. (a) If a random sample of size n = 48 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(11 ≤ x (x bar) ≤ 13) = (b) If a random sample of size n = 63 is drawn, find μx, σ x and P(11 ≤...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Derive the joint probability distribution function for X and Y. Make sure to explain your steps.
Exercise 10.45. Suppose that the joint distribution of X,Y is bivariate normal with parameters σX,σY,ρ,µX,µY as...
Exercise 10.45. Suppose that the joint distribution of X,Y is bivariate normal with parameters σX,σY,ρ,µX,µY as described in Section 8.5. (a) Compute the conditional probability density of X given Y =y. (b) Find E[X|Y].
Let Θ be a Bernoulli random variable that indicates which one of two hypotheses is true,...
Let Θ be a Bernoulli random variable that indicates which one of two hypotheses is true, and let P(Θ=1)=p. Under the hypothesis Θ=0, the random variable X has a normal distribution with mean 0, and variance 1. Under the alternative hypothesis Θ=1, X has a normal distribution with mean 2 and variance 1. Suppose for this part of the problem that p=2/3. The MAP rule can choose in favor of the hypothesis Θ=1 if and only if x≥c1. Find the...