Question

Suppose x has a distribution with μ = 11 and σ = 9. (a) If a...

Suppose x has a distribution with μ = 11 and σ = 9.

(a) If a random sample of size n = 48 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.)

μx =

σ x =

P(11 ≤ x (x bar) ≤ 13) =

(b) If a random sample of size n = 63 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σ x to two decimal places and the probability to four decimal places.)

μx =

σ x =

P(11 ≤ x ≤ 13) =

(c) Why should you expect the probability of part (b) to be higher than that of part (a)? (Hint: Consider the standard deviations in parts (a) and (b).) The standard deviation of part (b) is ______ part (a) because of the _____ sample size. Therefore, the distribution about μx is ______ .

*** the probability (11< x < 13) has x bar in the middle

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose x has a distribution with μ = 15 and σ = 9. (a) If a...
Suppose x has a distribution with μ = 15 and σ = 9. (a) If a random sample of size n = 43 is drawn, find μx, σx and P(15 ≤ x ≤ 17). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(15 ≤ x ≤ 17) = (b) If a random sample of size n = 67 is drawn, find μx, σx and P(15 ≤ x ≤ 17). (Round σx...
Suppose x has a distribution with μ = 19 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 19 and σ = 15. (a) If a random sample of size n = 48 is drawn, find μx, σ x and P(19 ≤ x ≤ 21). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(19 ≤ x ≤ 21) = (b) If a random sample of size n = 58 is drawn, find μx, σ x and P(19 ≤ x ≤...
Suppose x has a distribution with μ = 29 and σ = 25. (a) If a...
Suppose x has a distribution with μ = 29 and σ = 25. (a) If a random sample of size n = 41 is drawn, find μx, σ x and P(29 ≤ x ≤ 31). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(29 ≤ x ≤ 31) = (b) If a random sample of size n = 71 is drawn, find μx, σ x and P(29 ≤ x ≤...
Suppose x has a distribution with μ = 23 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 23 and σ = 15. (a) If a random sample of size n = 44 is drawn, find μx, σ x and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 64 is drawn, find μx, σ x and P(23 ≤ x ≤...
Suppose x has a distribution with μ = 12 and σ = 8. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 8. (a) If a random sample of size n = 34 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 58 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x has a distribution with μ = 22 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 22 and σ = 18. (a) If a random sample of size n = 35 is drawn, find μx, σx and P(22 ≤ x ≤ 24). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(22 ≤ x ≤ 24) = (b) If a random sample of size n = 60 is drawn, find μx, σx and P(22 ≤ x ≤ 24). (Round σx...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a random sample of size n = 36 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(21 ≤ x ≤ 23) = (b) If a random sample of size n = 60 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx...
Suppose x has a distribution with μ = 19 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 19 and σ = 15. (a) If a random sample of size n = 45 is drawn, find μx, σx and P(19 ≤ x ≤ 21). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(19 ≤ x ≤ 21) = (b) If a random sample of size n = 75 is drawn, find μx, σx and P(19 ≤ x ≤ 21). (Round σx...
Suppose x has a distribution with μ = 19 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 19 and σ = 18. (a) If a random sample of size n = 33 is drawn, find μx, σx and P(19 ≤x ≤ 21). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(19 ≤ x ≤ 21) = (b) If a random sample of size n = 75 is drawn, find μx, σx and P(19 ≤x ≤ 21). (Round σx to two...
Suppose x has a distribution with μ = 15 and σ = 12. (a) If a...
Suppose x has a distribution with μ = 15 and σ = 12. (a) If a random sample of size n = 32 is drawn, find μx, σ x and P(15 ≤ x ≤ 17). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(15 ≤ x ≤ 17) = (b) If a random sample of size n = 57 is drawn, find μx, σ x and P(15 ≤ x ≤...