Question

The diameters of apples from an orchard in Washington are normally distributed. The mean is 3.2...

The diameters of apples from an orchard in Washington are normally distributed. The mean is 3.2 inches with a standard deviation of 1.1 inches. Assume x is a random variable that represents the diameter of a Washington apple.

a. Is this random variable x an example of a discrete or continuous random variable? Explain why.

b. What is the probability that the diameter of a single apple will be:

1.9 inches or less?

3.6 inches or more?

Between 1.9 and 3.6 inches?

c. Suppose one sack of apples contain 8 apples, what is the probability that the average diameter of that sack of apples is between 1.9 and 3.6 inches?

d. Suppose one sack of apples contain 10 apples, what is the probability that the average diameter of that sack is +/- 0.5 inches of the diameter of apples?

e. If only the largest 80% of apples are packaged for retail sale, what would be the smallest diameter of an apple packaged for retail?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Oliver’s Organic Food Store is about to purchase a large shipment of apples from an orchard....
Oliver’s Organic Food Store is about to purchase a large shipment of apples from an orchard. Oliver is picky about the size of the apples, and wants the mean weight among the apples he is about to purchase to be very close to 150 grams. When the shipment arrives, Oliver will randomly select n = 9 apples and compute the sample mean weight among them. He has decided that if the sample mean weight is less than 145 grams or...
Suppose that the diameters of oak trees are normally distributed with a mean of 4 feet...
Suppose that the diameters of oak trees are normally distributed with a mean of 4 feet and a standard deviation of 0.375 feet. Step 1 of 5: What is the probability of walking down the street and finding an oak tree with a diameter of more than 4.875 feet? [Remember to round probabilities to 4 decimal places] Step 2 of 5: What is the probability that the tree you find is between 4.2 and 5 feet in diameter? Step 3...
Please box or bold font answers Suppose that the diameters of oak trees are normally distributed...
Please box or bold font answers Suppose that the diameters of oak trees are normally distributed with a mean 4 feet and standard deviation of 4 inches. Step 1 of 5: What is the probability of finding a tree with diameter of more than 3.75 feet? Step 2 of 5: What is the probability that the tree you find is between 3.75 and 4.75 feet in diameter? Step 3 of 5: Interpret your probability from the previous step. Step 4...
The length, X, of a fish from a particular mountain lake in Idaho is normally distributed...
The length, X, of a fish from a particular mountain lake in Idaho is normally distributed with μ=7 inches and σ=1.7 inches. (a) Is X a discrete or continuous random variable? (Type: DISCRETE or CONTINUOUS) ANSWER: (b) Write the event ''a fish chosen has a length equal to 4 inches'' in terms of X:  . (c) Find the probability of this event: (d) Find the probability that the length of a chosen fish was greater than 8.5 inches:  . (e) Find the...
The diameter of a brand of tennis balls is approximately normally distributed, with a mean of...
The diameter of a brand of tennis balls is approximately normally distributed, with a mean of 2.51 inches and a standard deviation of 0.03 inch. A random sample of 11 tennis balls is selected. a. What is the probability that the sample mean is less than 2.49 inches? P(X < 2.49)=.0136 b. What is the probability that the sample mean is between 2.50 and 2.52 ?inches? P(2.50 < X < 2.52) d. The probability is 57 % that the sample...
Heights for college women are normally distributed with a mean of 65 inches and standard deviation...
Heights for college women are normally distributed with a mean of 65 inches and standard deviation of 2.7 inches. Find the 25th percentile. Suppose that the time students wait on a bus can be described by a uniform random variable X, were X is between 0 and 60 minutes. What is the probability they will have to wait between 25 and 35 minutes for the next bus?
The diameter of a brand of tennis balls is approximately normally​ distributed, with a mean of...
The diameter of a brand of tennis balls is approximately normally​ distributed, with a mean of 2.52 inches and a standard deviation of 0.04 inch. A random sample of 11 tennis balls is selected . a. what is probability that sample mean is between 2.50 and 2.54 inches? Part 2 given a normal distributuon with m =104 and s= 10 and given you select a sample of n=4 2a. there is a 62% chance x bar is above what value?
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 66 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 66 inches and standard deviation 2 inches. (a) What is the probability that an 18-year-old man selected at random is between 65 and 67 inches tall? (Round your answer to four decimal places.) (b) If a random sample of fourteen 18-year-old men is selected, what is the probability that the mean height x is between 65 and 67 inches? (Round your answer to four decimal places.)
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 65 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 65 inches and standard deviation 4 inches. (a) What is the probability that an 18-year-old man selected at random is between 64 and 66 inches tall? (Round your answer to four decimal places.) (b) If a random sample of eleven 18-year-old men is selected, what is the probability that the mean height x is between 64 and 66 inches? (Round your answer to four decimal places.)
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard deviation 4 inches. If a random sample of twenty-eight 18-year-old men is selected, what is the probability that the mean height x is between 70 and 72 inches?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT