Question

A Poisson distribution has a mean value of 14. Calculate the probability of a value greater...

A Poisson distribution has a mean value of 14. Calculate the probability of a value greater than 14. Use 4 decimal places

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If random variable X has a Poisson distribution with mean =10, find the probability that X...
If random variable X has a Poisson distribution with mean =10, find the probability that X is more than the 8. That is, find P(X>8) Round to 4 decimal places.
X is a Poisson random variable with a mean of 10, a)What is the probability that...
X is a Poisson random variable with a mean of 10, a)What is the probability that x is equal to 8 (round to four decimal places)? b) What is the probability that x is greater than or equal to 2 (round to four decimal places)
1. A random variable X has a normal distribution with a mean of 75 and a...
1. A random variable X has a normal distribution with a mean of 75 and a variance of 9. Calculate P(60 < X < 70.5). Round your answer to 4 decimal places. 2. A random variable X has a uniform distribution with a minimum of -50 and a maximum of -20. Calculate P(X > -25). Round your answer to 4 decimal places. 3.Which of the following statements about continuous random variables and continuous probability distributions is/are TRUE? I. The probability...
Suppose that x has a Poisson distribution with μ = 8. (a) Compute the mean, μx,...
Suppose that x has a Poisson distribution with μ = 8. (a) Compute the mean, μx, variance, σ 2 x  σx2 , and standard deviation, σx. (Do not round your intermediate calculation. Round your final answer to 3 decimal places.) (b) Calculate the intervals [μx ± 2σx] and [μx ± 3σx ]. Find the probability that x will be inside each of these intervals. Hint: When calculating probability, round up the lower interval to next whole number and round down the...
Suppose that x has a Poisson distribution with μ = 19. (a) Compute the mean, μx,...
Suppose that x has a Poisson distribution with μ = 19. (a) Compute the mean, μx, variance, σ2x , and standard deviation, σx. (Do not round your intermediate calculation. Round your final answer to 3 decimal places.)   µx = , σx2 = , σx = (b) Calculate the intervals [μx ± 2σx] and [μx ± 3σx ]. Find the probability that x will be inside each of these intervals. Hint: When calculating probability, round up the lower interval to next...
How to identify the Poisson Probability??? (an average) ... How to calculate the mean for poisson???
How to identify the Poisson Probability??? (an average) ... How to calculate the mean for poisson???
Cars arrive to a gas station according to a Poisson distribution with a mean of 4...
Cars arrive to a gas station according to a Poisson distribution with a mean of 4 cars per hour. Use Excel or StatCrunch to solve. a. What is the expected number of cars arriving in 2 hours, or λt? b. What is the probability of 6 or less cars arriving in 2 hours? ROUND TO FOUR (4) DECIMAL PLACES. c. What is the probability of 9 or more cars arriving in 2 hours? ROUND TO FOUR (4) DECIMAL PLACES.
In one town, the number of burglaries in a week has a Poisson distribution with mean...
In one town, the number of burglaries in a week has a Poisson distribution with mean μ = 4.5. Let variable x denote the number of burglaries in this town in a randomly selected month. Find the smallest usual value for x. Round your answer to three decimal places. (HINT: Assume a month to be exactly 4 weeks)
The expected value for a certain Poisson probability distribution is 9. The standard deviation for this...
The expected value for a certain Poisson probability distribution is 9. The standard deviation for this Poisson probability distribution is
Assume a Poisson random variable has a mean of 4 successes over a 128-minute period. a....
Assume a Poisson random variable has a mean of 4 successes over a 128-minute period. a. Find the mean of the random variable, defined by the time between successes. b. What is the rate parameter of the appropriate exponential distribution? (Round your answer to 2 decimal places.) c. Find the probability that the time to success will be more than 60 minutes. (Round intermediate calculations to at least 4 decimal places and final answer to 4 decimal places.)