Question

1. Given a proportion problem where the population proportion π=0.15 and sample size n=50. What is...

1. Given a proportion problem where the population proportion π=0.15 and sample size n=50. What is the sampling distribution of the sample proportion?

2. given a proportion problem where the population proportion π=0.1 and sample size n=40. What is the sampling distribution of the sample proportion?

3. If you take a sample of size n from a distribution that is not normal where the mean and standart deviation are given on the bottom. what is the sampling distribution of the sample mean?   µ=12 , σ=3 , n= 16

Homework Answers

Answer #1

Solution :

1)

Given that,

= 0.15

1 - = 1 - 0.15 = 0.85

n = 50

The sampling distribution of the sample proportion

= ( * (1 - )) / n = (0.15 * 0.85)) / 50 = 0.0505

2)

Given that,

= 0.1

1 - = 1 - 0.1 = 0.9

n = 40

The sampling distribution of the sample proportion

= ( * (1 - )) / n = (0.1 * 0.9)) / 40 = 0.0474

3)

Solution :

Given that,

mean = = 12

standard deviation = = 3

n = 16

The sampling distribution of mean and standard deviation is ,

= 12 and

= / n = 3 / 16 = 3 / 4 = 0.75

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple random sample of size n=40 is obtained from a population with μ = 50...
A simple random sample of size n=40 is obtained from a population with μ = 50 a n d σ = 4. Does the population distribution need to be normally distributed for the sampling distribution of x ¯ to be approximately normally distributed? Why or why not? What is the mean and standard deviation of the sampling distribution?
31) – (33): A random sample of size n = 40 is selected from a population...
31) – (33): A random sample of size n = 40 is selected from a population that has a proportion of successes p = 0.8. 31) Determine the mean proportion of the sampling distribution of the sample proportion. 32) Determine the standard deviation of the sampling distribution of the sample proportion, to 3 decimal places. 33) True or False? The sampling distribution of the sample proportion is approximately normal.
Suppose that we will take a random sample of size n from a population having mean...
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean  : (a) µ = 20, σ = 2, n = 41 (Round your answers of "σ" and "σ2" to 4 decimal places.) µ σ2 σ (b) µ = 502, σ = .7, n = 132 (Round your answers of...
Suppose that we will take a random sample of size n from a population having mean...
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean : (a) µ = 18, σ = 2, n = 22 (Round your answers of "σ " and "σ 2" to 4 decimal places.) (b) µ = 494, σ = .3, n = 125 (Round your answers of...
A random sample of size n = 40 is selected from a binomial distribution with population...
A random sample of size n = 40 is selected from a binomial distribution with population proportion p = 0.25. (a) What will be the approximate shape of the sampling distribution of p̂? approximately normal skewed symmetric Correct: Your answer is correct. (b) What will be the mean and standard deviation (or standard error) of the sampling distribution of p̂? (Round your answers to four decimal places.) mean 0.25 Correct: Your answer is correct. standard deviation 0.0685 Correct: Your answer...
A random sample of size 64 is taken from a population with mean µ = 17...
A random sample of size 64 is taken from a population with mean µ = 17 and standard deviation σ = 16. What are the expected value and the standard deviation for the sampling distribution of the sample mean?
Given a sample size of n = 529. Let the variance of the population be σ2...
Given a sample size of n = 529. Let the variance of the population be σ2 = 10.89. Let the mean of the sample be xbar = 15. Construct a 95% confidence interval for µ, the mean of the population, using this data and the central limit theorem. Use Summary 5b, Table 1, Column 1 What is the standard deviation (σ) of the population? What is the standard deviation of the mean xbar when the sample size is n, i.e....
A random sample of size n = 50 is selected from a binomial distribution with population...
A random sample of size n = 50 is selected from a binomial distribution with population proportion p = 0.8. Describe the approximate shape of the sampling distribution of p̂. Calculate the mean and standard deviation (or standard error) of the sampling distribution of p̂. (Round your standard deviation to four decimal places.) mean = standard deviation = Find the probability that the sample proportion p̂ is less than 0.9. (Round your answer to four decimal places.)
If the sample mean is 75 and the sample size (n) is 36, given that the...
If the sample mean is 75 and the sample size (n) is 36, given that the population standard deviation (σ) equals 12, construct a 99% confidence interval for the population mean (µ). What is the standard error of the mean (compute)? What are the critical values? From what distribution? What is the confidence interval (compute)? If an expert asserted that the population mean was 79, at a 99% level of confidence, would the data gathered in this sample tend to...
Suppose a simple random sample of size n =13 is obtained from a population with μ=...
Suppose a simple random sample of size n =13 is obtained from a population with μ= 68 and σ =16. ​(a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample​ mean? Assuming the normal model can be​ used, describe the sampling distribution x. ​(b) Assuming the normal model can be​ used, determine ​P(x < 72.2 ). ​(c) Assuming the normal model can be​ used, determine ​P(x...