Question

If the sample mean is 75 and the sample size (n) is 36, given that the...

If the sample mean is 75 and the sample size (n) is 36, given that the population standard deviation (σ) equals 12, construct a 99% confidence interval for the population mean (µ). What is the standard error of the mean (compute)? What are the critical values? From what distribution? What is the confidence interval (compute)? If an expert asserted that the population mean was 79, at a 99% level of confidence, would the data gathered in this sample tend to support the expert's opinion?

Homework Answers

Answer #1

please like me my solution sir/madam

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We have a sample of size n = 36 with mean x with bar on top...
We have a sample of size n = 36 with mean x with bar on top space equals 12. If population standard deviation, sigma equals 2, what is the upper limit of 95% confidence interval (zα/2=1.96) of population mean µ?
A sample​ mean, sample​ size, population standard​ deviation, and confidence level are provided. Use this information...
A sample​ mean, sample​ size, population standard​ deviation, and confidence level are provided. Use this information to complete parts​ (a) through​ (c) below. x=54, n=14, σ=5, confidence level=99% A. Use the​ one-mean z-interval procedure to find a confidence interval for the mean of the population from which the sample was drawn. The confidence interval is from ___to___ B. Obtain the margin of error by taking half the length of the confidence interval. What is the length of the confidence​ interval?...
Given a sample size of n = 529. Let the variance of the population be σ2...
Given a sample size of n = 529. Let the variance of the population be σ2 = 10.89. Let the mean of the sample be xbar = 15. Construct a 95% confidence interval for µ, the mean of the population, using this data and the central limit theorem. Use Summary 5b, Table 1, Column 1 What is the standard deviation (σ) of the population? What is the standard deviation of the mean xbar when the sample size is n, i.e....
A sample of size n = 36 produced the sample mean of 9. Assuming the population...
A sample of size n = 36 produced the sample mean of 9. Assuming the population standard deviation = 4, compute a 95% confidence interval for the population mean. a) 8.33 ≤ μ ≤ 9.67 b) 7.04 ≤ μ ≤ 10.96 c) 5 ≤ μ ≤ 14 d) 7.69 ≤ μ ≤ 10.31
A simple random sample of size n equals 40 is drawn from a population. The sample...
A simple random sample of size n equals 40 is drawn from a population. The sample mean is found to be x overbar equals 120.2 and the sample standard deviation is found to be s equals 13.2. Construct a​ 99% confidence interval for the population mean.
A simple random sample size of 40 is drawn from a population. The sample mean is...
A simple random sample size of 40 is drawn from a population. The sample mean is found to be x overbar equals 120.1x=120.1 and the sample standard deviation is found to be s equals 12.8s=12.8. Construct a​ 99% confidence interval for the population mean.
A simple random sample of size n equals n=40 is drawn from a population. The sample...
A simple random sample of size n equals n=40 is drawn from a population. The sample mean is found to be x overbar equals x=121.2 and the sample standard deviation is found to be s equals s=12.4. Construct a​ 99% confidence interval for the population mean. Find the lower and upper bounds.
A simple random sample of size n equals n=40 is drawn from a population. The sample...
A simple random sample of size n equals n=40 is drawn from a population. The sample mean is found to be x=120.4 and the sample standard deviation is found to be s equals s=12.5. Construct a​ 99% confidence interval for the population mean. a) The lower bound is __ b) The upper bound is ___ (Round to two decimal places as​ needed.)
A simple random sample of size n equals 40n=40 is drawn from a population. The sample...
A simple random sample of size n equals 40n=40 is drawn from a population. The sample mean is found to be x overbar equals 121.6x=121.6 and the sample standard deviation is found to be s equals 12.4s=12.4. Construct a​ 99% confidence interval for the population mean. The lower bound is _____. The Upper bound is ____.
A random sample of size 36 has sample mean 12 and sample standard deviation 3. (a)...
A random sample of size 36 has sample mean 12 and sample standard deviation 3. (a) Check Requirements: Is it appropriate to use a Student’s t distribution to compute a confidence interval for the population mean ? Explain. (b) Find a 80% confidence interval for µ. [round E to 2 d.p.] (c) Interpretation: Explain the meaning of the confidence interval you computed.