Question

Given a sample size of n = 529. Let the variance of the population be σ2...

Given a sample size of n = 529. Let the variance of the population be σ2 = 10.89. Let the mean of the sample be xbar = 15. Construct a 95% confidence interval for µ, the mean of the population, using this data and the central limit theorem.

Use Summary 5b, Table 1, Column 1

  1. What is the standard deviation (σ) of the population?
  2. What is the standard deviation of the mean xbar when the sample size is n, i.e. what is σxbar , in terms of σ and n using the central limit theorem?
  3. Is this a one-sided or two-sided problem?
  4. What value of z should be used in computing k, the margin of error, where

z = k/σxbar ?

  1. What is k?
  2. Write the 95% confidence interval for µ based on xbar and k,

(xbar – k) < µ < (xbar + k)

  1. Using the Z-score applet “Area from a value”. Let the Mean = 15, and SD = σxbar. Choose “Between (xbar -k) and (xbar + k)” using xbar = 15 and your computed value of k. Hit “Recalculate”. Does the probability approximately equal 0.95? (yes or no). Include a screen shot of your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a population with a mean of µ = 100 and a variance σ2 = 12,...
Given a population with a mean of µ = 100 and a variance σ2 = 12, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 52 is obtained. What is the probability that   98.00 < x < 100.76?
Given a population with a mean of µ = 100 and a variance σ2 = 13,...
Given a population with a mean of µ = 100 and a variance σ2 = 13, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 28 is obtained. What is the probability that 98.02 < x⎯⎯ < 99.08?
A random sample is drawn from a population having σ = 15. a. If the sample...
A random sample is drawn from a population having σ = 15. a. If the sample size is n = 30 and the sample mean x = 100, what is the 95% confidence interval estimate of the population mean µ? b. If the sample size is n = 120 and the sample mean x = 100, what is the 95% confidence interval estimate of the population mean µ? c. If the sample size is n = 480 and the sample...
Assume a normal population with known variance σ2, a random sample (n< 30) is selected. Let...
Assume a normal population with known variance σ2, a random sample (n< 30) is selected. Let x¯,s represent the sample mean and sample deviation. (1)write down the formula: 98% one-sided confidence interval with upper bound for the population mean. (2) show how to derive the confidence interval formula in (1).
Given a population with a mean of µ = 230 and a standard deviation σ =...
Given a population with a mean of µ = 230 and a standard deviation σ = 35, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 185 is obtained. Calculate σx⎯⎯
A sample​ mean, sample​ size, population standard​ deviation, and confidence level are provided. Use this information...
A sample​ mean, sample​ size, population standard​ deviation, and confidence level are provided. Use this information to complete parts​ (a) through​ (c) below. x =2323​, n=3434​, σ=55​, confidence level=95​% a. Use the​ one-mean z-interval procedure to find a confidence interval for the mean of the population from which the sample was drawn. The confidence interval is from__ to__ b.Obtain the margin of error by taking half the length of the confidence interval. What is the length of the confidence​ interval?...
Given a population with a mean of μ=105 and a variance of σ2=36​, the central limit...
Given a population with a mean of μ=105 and a variance of σ2=36​, the central limit theorem applies when the sample size is n≥25. A random sample of size n=25 is obtained. a. What are the mean and variance of the sampling distribution for the sample​ means? b. What is the probability that x>107​? c. What is the probability that 104<x<106​? d. What is the probability that x≤105.5​?
The Central Limit Theorem says that when sample size n is taken from any population with...
The Central Limit Theorem says that when sample size n is taken from any population with mean μ and standard deviation σ when n is large, which of the following statements are true? The distribution of the sample mean is approximately Normal. The standard deviation is equal to that of the population. The distribution of the population is exactly Normal. The distribution is biased.
We have a sample of size n = 36 with mean x with bar on top...
We have a sample of size n = 36 with mean x with bar on top space equals 12. If population standard deviation, sigma equals 2, what is the upper limit of 95% confidence interval (zα/2=1.96) of population mean µ?
A random sample of size n=55 is obtained from a population with a standard deviation of...
A random sample of size n=55 is obtained from a population with a standard deviation of σ=17.2, and the sample mean is computed to be x=78.5. Compute the 95% confidence interval. Compute the 90% confidence interval. SHOW WORK
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT