Question

The minutes to commute to work is exponentially distributed with a mean of 20 minutes. a....

The minutes to commute to work is exponentially distributed with a mean of 20 minutes.

a. Find the m value.


b. Find the standard deviation.



c. Find the probability of commuting less than 10 minutes. ?(? < 10)



d. Find the probability of commuting greater than 25 minutes? ?(? > 25)



e. Find the probability of commuting between 15 and 22 minutes? ?(15 < ? < 22)



f. Find the probability of commuting 5 minutes? ?(? = 5)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The time for a certain female student to commute to SCSU is Normally Distributed with mean...
The time for a certain female student to commute to SCSU is Normally Distributed with mean 32.5 minutes and standard deviation of 6.3 minutes. A. Find the probability her commuting time is more than 40 minutes. B. Find the probability her commuting time is less than 43 minutes. C. Find the value t such that 10% of her commuting times are greater than t. D. Between which two values will the middle 70% of her commuting times fall? E. Find...
The time for a certain female student to commute to SCSU is Normally Distributed with mean...
The time for a certain female student to commute to SCSU is Normally Distributed with mean 32.5 minutes and standard deviation of 6.5 minutes. Find the probability her commuting time is more than 40 minutes. Find the probability her commuting time is less than 43 minutes. Find the value t such that 10% of her commuting times are greater than t. Between which two values will the middle 70% of her commuting times fall? Find the probability her commuting time...
9. The time for a certain male student to commute to SCSU is Normally Distributed with...
9. The time for a certain male student to commute to SCSU is Normally Distributed with mean 48.3 minutes and standard deviation of 7.1 minutes. A random sample of 25 commuting times is taken. Find the 80th percentile of the sample mean of the commuting times. 10. The time for a certain male student to commute to SCSU is Normally Distributed with mean 48.3 minutes and standard deviation of 7.1 minutes. A random sample of 25 commuting times is taken....
The distance between flaws on a long cable is exponentially distributed with a mean of 12...
The distance between flaws on a long cable is exponentially distributed with a mean of 12 m. Find the probability that the distance between two flaws is greater than 15 m. Find the probability that the distance between two flaws is greater than 25 m given that it is greater than 10 m. Find the probability that the distance between two flaws is greater than 20 m given that it is greater than 10 m.
The distance between flaws on a long cable is exponentially distributed with a mean of 12...
The distance between flaws on a long cable is exponentially distributed with a mean of 12 m. Find the probability that the distance between two flaws is greater than 15 m. Find the probability that the distance between two flaws is greater than 25 m given that it is greater than 10 m. Find the probability that the distance between two flaws is greater than 20 m given that it is greater than 10 m.
the average employee in ontario spends mu=24.0 minutes commuting to work each day. Assume that the...
the average employee in ontario spends mu=24.0 minutes commuting to work each day. Assume that the distribution of commute times is normal with a standard deviation of sigma=8.0 minutes. a)what proportion of ontario employees spend less than 25 minutes a day commuting? b)what is the probability of randomly selecting an employee who spends more than 20 minutes commuting each day? c) what proportion of employees spend between 11 and 15 minutes commuting? d)what is the 50th percentile in this distribution...
1. Earthquake magnitudes are exponentially distributed, with a mean magnitude of 4.7. (a) What is the...
1. Earthquake magnitudes are exponentially distributed, with a mean magnitude of 4.7. (a) What is the probability that the next earthquake will have magnitude between 3.6 and 5.2? (2) (b) What is the 85th percentile of the magnitude distribution? (2) 2. Suppose that commuting times are uniformly distributed, and range between 10 minutes and 55 minutes. (a) What is the probability that an individual has a commuting time between 20 and 40 minutes? (2) (b) What is the 65th percentile...
In a random sample of 20 ​people, the mean commute time to work was 32.6 minutes...
In a random sample of 20 ​people, the mean commute time to work was 32.6 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean mu. What is the margin of error of u​? Interpret the results. The confidence interval for the population mean u is? What is the margin of error?
The distribution of college students’ commute time is skewed to the right with the mean 20...
The distribution of college students’ commute time is skewed to the right with the mean 20 minutes and the standard deviation 30 minutes. 1. Let X¯ be the sample mean commute time of a random sample of 9 students. What are (i) the mean and (ii) variance of X¯? (iii) Is the distribution of X¯ normal? (iv) Why or why not? 2. Let X¯ 100 be the sample mean commute time of a random sample of 100 students. What is...
A college claims that commute times to the school have a mean of 60 minutes with...
A college claims that commute times to the school have a mean of 60 minutes with a standard deviation of 12 minutes.  Assume that student commute times at this college are normally distributed.  A statistics student believes that the variation in student commute times is greater than 12 minutes.  To test this a sample of 71 students in chosen and it is found that their mean commute time is 58 minutes with a standard deviation of 14.5 minutes. At the 0.05 level of...