Question

1) {a, b, c}’ ∩ {e,f, …,w}’ where A’ means complement of A and universe U...

1) {a, b, c}’ ∩ {e,f, …,w}’ where A’ means complement of A and universe U is all lower case alphabets from a to z.

2) Let A = {1, 2, · · · , 10} and B = {1,2,3, a, b, c, d} then   |A   ∪ B|=

3) There are 5 routes from City A to City B, 11 routes from City B to City C and 8 routes from city C to City D. How many different ways for a person to travel from City A to City D via City B and City C?

4) {a, c, b, ∅,} – ({a, b, c, d} – {c, d, e}).

5) power{a, b, c, d} – ({a, b, c} ∪ {b, c, d, e})

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let u=〈5,-1,6〉, v=〈0,1,2〉, and w=〈1,3,4〉. Find (a)u×(v×w) (b)(u×v)×w (c)(u×v)×(v×w) d)(v×w)×(u×v).
Let u=〈5,-1,6〉, v=〈0,1,2〉, and w=〈1,3,4〉. Find (a)u×(v×w) (b)(u×v)×w (c)(u×v)×(v×w) d)(v×w)×(u×v).
1. Let A, B, C be subsets of a universe U. i. If A is contained...
1. Let A, B, C be subsets of a universe U. i. If A is contained in B, then C \ A is contained in C \ B. ii. If A and B are disjoint, then A \ C and B \ C are disjoint. iii. If A and B are disjoint, then A ∪ C and B ∪ C are disjoint. iv. If A ⊆ (B ∪ C), then A ⊆ B or A ⊆ C.
Let X and Y be jointly distributed random variables with means, E(X) = 1, E(Y) =...
Let X and Y be jointly distributed random variables with means, E(X) = 1, E(Y) = 0, variances, Var(X) = 4, Var(Y ) = 5, and covariance, Cov(X, Y ) = 2. Let U = 3X-Y +2 and W = 2X + Y . Obtain the following expectations: A.) Var(U): B.) Var(W): C. Cov(U,W): ans should be 29, 29, 21 but I need help showing how to solve.
Let S = {A, B, C, D, E, F, G, H, I, J} be the set...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set consisting of the following elements: A = N, B = 2N , C = 2P(N) , D = [0, 1), E = ∅, F = Z × Z, G = {x ∈ N|x 2 + x < 2}, H = { 2 n 3 k |n, k ∈ N}, I = R \ Q, J = R. Consider the relation ∼ on S given...
2. Let A, B, C be subsets of a universe U. Let R ⊆ A ×...
2. Let A, B, C be subsets of a universe U. Let R ⊆ A × A and S ⊆ A × A be binary relations on A. i. If R is transitive, then R−1 is transitive. ii. If R is reflexive or S is reflexive, then R ∪ S is reflexive. iii. If R is a function, then S ◦ R is a function. iv. If S ◦ R is a function, then R is a function
let A = { a, b, c, d , e, f, g} B = { d,...
let A = { a, b, c, d , e, f, g} B = { d, e , f , g} and C ={ a, b, c, d} find : (B n C)’ B’ B n C (B U C) ‘
Let X ~N(0,2) and U~U(-4,4). Which one is it? a) E[X] = E[U] b) Prob(N>0) =...
Let X ~N(0,2) and U~U(-4,4). Which one is it? a) E[X] = E[U] b) Prob(N>0) = Prob(U>0) c) Prob(N>4) 4) d) ?? < ?? e) Prob (U<5) = 9/8
Let X ~N(0,2) and U~U(-4,4). Which are true? a) E[X] = E[U] b) Prob(N>0) = Prob(U>0)...
Let X ~N(0,2) and U~U(-4,4). Which are true? a) E[X] = E[U] b) Prob(N>0) = Prob(U>0) c) Prob(N>4) <Prob ( U>4) d) ??<?? e) Prob (U<5) = 9/8
Let u, v, and w be vectors in Rn. Determine which of the following statements are...
Let u, v, and w be vectors in Rn. Determine which of the following statements are always true. (i) If ||u|| = 4, ||v|| = 5, and ?||u + v|| = 8, then u?·?v = 4. (ii) If ||u|| = 2 and ||v|| = 3, ?then |u?·?v| ? 5. (iii) The expression (v?·?w)u is both meaningful and defined. (A) (ii) and (iii) only (B) (ii) only (C) none of them (D) all of them (E) (i) only (F) (i) and...
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and...
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and b are constants. (a) Find the distribution of Y . (b) Find the mean and variance of Y . (c) Find a and b so that Y ∼ U(−1, 1). (d) Explain how to find a function (transformation), r(), so that W = r(X) has an exponential distribution with pdf f(w) = e^ −w, w > 0.