Question

A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...

A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05.

(1) Compute p̂.

(2) Compute the corresponding standardized sample test statistic. (Round your answer to two decimal places.)

(3) Find the P-value of the test statistic. (Round your answer to four decimal places.)

Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file. Let us say you took a random sample of n = 218 numerical entries from the file and r = 52 of the entries had a first nonzero digit of 1. Let p represent the population proportion of all numbers in the corporate file that have a first nonzero digit of 1. Test the claim that p is less than 0.301. Use α = 0.05.

(4) What is the value of the sample test statistic? (Round your answer to two decimal places.)


(5) Find the P-value of the test statistic. (Round your answer to four decimal places.)

Homework Answers

Answer #1

a)

1

sample proportion p̂ = x/n= 0.4000

2)

test stat z =(p̂-p)/√(p(1-p)/n)= -0.89

3)

p value                          = 0.3734

4)

sample success x   = 52
sample size          n    = 218
std error   se =√(p*(1-p)/n) = 0.0311
sample proportion p̂ = x/n= 0.2385
test stat z =(p̂-p)/√(p(1-p)/n)= -2.01

5)

p value                          = 0.0222
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file....
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are the auditor for a very large corporation. The revenue file contains millions of numbers in a large computer data...
Question #1 A random sample of 20 binomial trials resulted in 8 successes. Test the claim...
Question #1 A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05.A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (c) Compute p̂. Compute the corresponding standardized sample test statistic. (Round your answer to two decimal places.)...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file....
Recall that Benford's Law claims that numbers chosen from very large data files tend to have...
Recall that Benford's Law claims that numbers chosen from very large data files tend to have "1" as the first nonzero digit disproportionately often. In fact, research has shown that if you randomly draw a number from a very large data file, the probability of getting a number with "1" as the leading digit is about 0.301. Now suppose you are an auditor for a very large corporation. The revenue report involves millions of numbers in a large computer file....
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the distribution? Explain. Yes, n·p and n·q are both less than 5. No, n·p is greater than 5, but n·q is less than 5. Yes, n·p and n·q are both greater than 5. No, n·p and n·q are both less than...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. Yes, np and nq are both greater than 5.No, np and nq are both less than 5.    No, np is greater than 5, but nq is less than 5.Yes, np and nq are both less than 5.No, nq...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p hat distribution? Explain. No, n·p and n·q are both less than 5. No, n·p is greater than 5, but n·q is less than 5. No, n·q is greater than 5, but n·p is less than 5. Yes, n·p and...
A random sample of 30 binomial trials resulted in 12 successes. Test the claim that the...
A random sample of 30 binomial trials resulted in 12 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the  distribution? Explain. Yes, n·p and n·q are both greater than 5 .No, n·p and n·q are both less than 5.     Yes, n·p and n·q are both less than 5 .No, n·p is greater than 5, but n·q is less than 5....
A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the...
A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. No, nq is greater than 5, but np is less than 5.Yes, np and nq are both greater than 5.    No, np is greater than 5, but nq is less than 5.No, np and nq are both less...