Question

A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the...

A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05.

(a) Can a normal distribution be used for the distribution? Explain.

No, nq is greater than 5, but np is less than 5.Yes, np and nq are both greater than 5.    No, np is greater than 5, but nq is less than 5.No, np and nq are both less than 5.Yes, np and nq are both less than 5.


(b) State the hypotheses.

H0: p = 0.5; H1: p > 0.5H0: p = 0.5; H1: p ≠ 0.5    H0: p = 0.5; H1: p < 0.5H0: p < 0.5; H1: p = 0.5


(c) Compute .


Compute the corresponding standardized sample test statistic. (Round your answer to two decimal places.)


(d) Find the P-value of the test statistic. (Round your answer to four decimal places.)


(e) Do you reject or fail to reject

H0?

Explain.

At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.    At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.


(f) What do the results tell you?

The sample value based on 40 trials is sufficiently different from 0.50 to justify rejecting H0 for α = 0.05.The sample value based on 40 trials is not sufficiently different from 0.50 to not reject H0 for α = 0.05.    The sample value based on 40 trials is sufficiently different from 0.50 to not reject H0 for α = 0.05.The sample value based on 40 trials is not sufficiently different from 0.50 to justify rejecting H0 for α = 0.05.

Homework Answers

Answer #1

The statistical software output for this problem is:

Hence,

a) Yes, np and nq are both greater than 5.

b) H0: p = 0.5; H1: p ≠ 0.5

c) p = 0.4

Test statistic = -1.26

d) P - value = 0.2059

e) Option D is correct.

f) Option B is correct.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. Yes, np and nq are both greater than 5.No, np and nq are both less than 5.    No, np is greater than 5, but nq is less than 5.Yes, np and nq are both less than 5.No, nq...
A random sample of 30 binomial trials resulted in 12 successes. Test the claim that the...
A random sample of 30 binomial trials resulted in 12 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the  distribution? Explain. Yes, n·p and n·q are both greater than 5 .No, n·p and n·q are both less than 5.     Yes, n·p and n·q are both less than 5 .No, n·p is greater than 5, but n·q is less than 5....
A random sample of 50 binomial trials resulted in 20 successes. Test the claim that the...
A random sample of 50 binomial trials resulted in 20 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (e) Do you reject or fail to reject H0? Explain. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.    At the α =...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p hat distribution? Explain. No, n·p and n·q are both less than 5. No, n·p is greater than 5, but n·q is less than 5. No, n·q is greater than 5, but n·p is less than 5. Yes, n·p and...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the distribution? Explain. Yes, n·p and n·q are both less than 5. No, n·p is greater than 5, but n·q is less than 5. Yes, n·p and n·q are both greater than 5. No, n·p and n·q are both less than...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ.(a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. The...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 60 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 60 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 85 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT