Question

Consider an M/M/1 queueing system in which the expected waiting time and expected number of customers...

Consider an M/M/1 queueing system in which the expected waiting time and expected number of customers in the system are 120 minutes and 10 customers, respectively. De- termine the probability that a customer’s service time exceeds 30 minutes.

The answer should be P=0.064

other than that is wrong

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an M/M/1 queue in which the expected number of customers in the system is 4,...
Consider an M/M/1 queue in which the expected number of customers in the system is 4, and the expected waiting time in the system is 80 minutes. What is the probability that a customer’s service time is less than 40 minutes?
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
Consider an M/M/2/3 capacitated queueing system with the arrival rate of 3 customers per hour and...
Consider an M/M/2/3 capacitated queueing system with the arrival rate of 3 customers per hour and the service rate of 2 customers per hour. a. Calculate the steady-state distribution of the number of customers in the system. b. Calculate L, Lq, Effective arrival rate, W and Wq.
A simple queueing system has an arrival rate of 6 per hour and a service rate...
A simple queueing system has an arrival rate of 6 per hour and a service rate of 10 per hour. For this system the average time in line has been estimated to be 20 minutes. Using Little’s Law estimate the following: Average time in the queueing system Average number of customers in the queueing system Average number of customers in the queue Average number of customers in service.
4. A bank manager has developed a new system to reduce the time customers spend waiting...
4. A bank manager has developed a new system to reduce the time customers spend waiting for teller service during peak hours. The manager hopes that the new system will reduce waiting times from the current 9 to 10 minutes to less than 6 minutes. a. Set up the null and alternative hypotheses needed if we wish to attempt to provide evidence supporting the claim that the mean waiting time is shorter than six minutes. b. The mean and the...
Consider an M / M / 1 queueing system with capacity N = 2. Suppose that...
Consider an M / M / 1 queueing system with capacity N = 2. Suppose that customers arrive at the rate of λ per hour and are served at the rate of 8 per hour. a. What should the arrival rate be so that an arriving potential customer has a 50% chance of joining the queue? b. With λ chosen to satisfy the requirement of part a, what percentage of the customers who actually enter the system get served immediately?
Suppose that the average waiting time at a banking service is 10 minutes. A customer waited...
Suppose that the average waiting time at a banking service is 10 minutes. A customer waited for 10 minutes, find the probability that he will be still waiting after 30 minutes. What is the approximate probability that the average waiting time of the next 25 customers is at most 12 minutes?
Suppose that the average waiting time at a banking service is 10 minutes. A customer waited...
Suppose that the average waiting time at a banking service is 10 minutes. A customer waited for 10 minutes, find the probability that he will be still waiting after 30 minutes. What is the approximate probability that the average waiting time of the next 25 customers is at most 12 minutes?
Suppose that the waiting time for a license plate renewal at a local office of a...
Suppose that the waiting time for a license plate renewal at a local office of a state motor vehicle department has been found to be normally distributed with a mean of 30 minutes and a standard deviation of 8 minutes. i. What is the probability that a randomly selected individual will have a waiting time of at least 10 minutes? ii. What is the probability that a randomly selected individual will have a waiting time between 15 and 45 minutes?...