Question

4. A bank manager has developed a new system to reduce the time customers spend waiting...

4. A bank manager has developed a new system to reduce the time customers spend waiting for teller service during peak hours. The manager hopes that the new system will reduce waiting times from the current 9 to 10 minutes to less than 6 minutes. a. Set up the null and alternative hypotheses needed if we wish to attempt to provide evidence supporting the claim that the mean waiting time is shorter than six minutes. b. The mean and the standard deviation of a sample of 100 bank customer waiting times are 5.46 minutes and 2.475 minutes, respectively. (1) Use the critical value approach to test H0 versus Ha when α = 0.05. (2) Use the p-value approach to test H0 versus Ha when α = 0.05.

Homework Answers

Answer #1

a)

H0: >= 6

Ha: < 6

b-1)

test statistics

t = - / S / sqrt(n)

= 5.46 - 6 / 2.475 / sqr(100)

= -2.18

This is test statistics value.

From T table,

Critical value at 0.05 level with 99 df = -1.660

Since test statistics < -1.660 , we have sufficient evidence to reject H0.

b - 2)

From T table,

With test statistics t = -2.18 and df = 99,

p-value = 0.0158

Since p-value < 0.05 level, we have sufficient evidence to reject H0.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Recall that a bank manager has developed a new system to reduce the time customers...
. Recall that a bank manager has developed a new system to reduce the time customers spend waiting for teller service during peak hours. The manager hopes the new system will reduce waiting times from the current 9 to 10 minutes to less than 6 minutes. Suppose the manager wishes to use the random sample of 75 waiting times to support the claim that the mean waiting time under the new system is shorter than six minutes. Letting μ represent...
8.27. The PNC bank manager of WMU branch has developed a new system to reduce the...
8.27. The PNC bank manager of WMU branch has developed a new system to reduce the time customers spend waiting for teller service during peak hours. The manager hopes the new system will reduce waiting times from the current nine to ten minutes to less than 6 minutes.Average waiting time was obtained as 5.46 based on a random sample of 25 waiting times. Is there enough evidence at the 5% level of significance to validate managers claim? Assume that the...
Recall that a bank manager has developed a new system to reduce the time customers spend...
Recall that a bank manager has developed a new system to reduce the time customers spend waiting to be served by tellers during peak business hours. The mean waiting time during peak business hours under the current system is roughly 9 to 10 minutes. The bank manager hopes that the new system will have a mean waiting time that is less than six minutes. The mean of the sample of 104 bank customer waiting times is x¯x¯ = 5.46. If...
Suppose a bank manager has developed a new system to reduce customer wait time at branches...
Suppose a bank manager has developed a new system to reduce customer wait time at branches for teller services. She obtains a sample of 100 customer wait times, and calculates the sample mean wait time to be 5.65 minutes. She knows that the population standard deviation is 1.20 minutes. Suppose the bank manager wants to ensure that the margin of error of her 95% confidence interval is no more than 0.20 minutes. How large a sample should she obtain? C.I....
The manager of a supermarket would like the variance of the waiting times of the customers...
The manager of a supermarket would like the variance of the waiting times of the customers not to exceed 4.0 minutes-squared. She would add a new cash register if the variance exceeds this threshold. She regularly checks the waiting times of the customers to ensure that the variance does not rise above the allowed level. In a recent random sample of 28 customer waiting times, she computes the sample variance as 6.5 minutes-squared. She believes that the waiting times are...
The bank manager wants to show that the new system reduces typical customer waiting times to...
The bank manager wants to show that the new system reduces typical customer waiting times to less than 6 minutes. One way to do this is to demonstrate that the mean of the population of all customer waiting times is less than 6. Letting this mean be µ, in this exercise we wish to investigate whether the sample of 93 waiting times provides evidence to support the claim that µ is less than 6.       For the sake of argument, we...
A bank calculated the waiting time (to be served) for a random sample of 18 customers...
A bank calculated the waiting time (to be served) for a random sample of 18 customers one day. The mean waiting time for the sample was 3.1 minutes and the standard deviation of the waiting times was 1.3 minutes. The bank is aiming for wait times less than 4 minutes. For the test with hypotheses H0:μ= 4 vs Ha:μ <4, the P-value is 0.0046.19. Part 1: Circle Yes or No if this hypothesis test is significant at the following levels:...
A bank claims that the mean waiting time in line is less than 1.7 minutes. A...
A bank claims that the mean waiting time in line is less than 1.7 minutes. A random sample of 20 customers has a mean of 1.5 minutes with a standard deviation of 0.8 minute. If α = 0.05, test the bank's claim using p-values.
The manager of a supermarket would like the variance of the waiting times of the customers...
The manager of a supermarket would like the variance of the waiting times of the customers not to exceed 3.7 minutes-squared. She would add a new cash register if the variance exceeds this threshold. She regularly checks the waiting times of the customers to ensure that the variance does not rise above the allowed level. In a recent random sample of 35 customer waiting times, she computes the sample variance as 5.8 minutes-squared. She believes that the waiting times are...
The manager of a supermarket would like the variance of the waiting times of the customers...
The manager of a supermarket would like the variance of the waiting times of the customers not to exceed 3 minutes-squared. She would add a new cash register if the variance exceeds this threshold. She regularly checks the waiting times of the customers to ensure that the variance does not rise above the allowed level. In a recent random sample of 28 customer waiting times, she computes the sample variance as 4.2 minutes-squared. She believes that the waiting times are...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT