Question

Assume that E(X)=7.5 E(Y)=5.2 E(XY)=72.6 Given this information, calculate the covariance between 1.6X+20 and 1.1Y+17.9. Cov(1.6X+20,1.1Y+17.9)=

Assume that

  • E(X)=7.5
  • E(Y)=5.2
  • E(XY)=72.6

Given this information, calculate the covariance between 1.6X+20 and 1.1Y+17.9.

  • Cov(1.6X+20,1.1Y+17.9)=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X, Y, and Z are independent, with E[X]=E[Y]=E[Z]=2, and E[X2]=E[Y2]=E[Z2]=5. Find cov(XY,XZ). (Enter a...
Suppose that X, Y, and Z are independent, with E[X]=E[Y]=E[Z]=2, and E[X2]=E[Y2]=E[Z2]=5. Find cov(XY,XZ). (Enter a numerical answer.) cov(XY,XZ)= Let X be a standard normal random variable. Another random variable is determined as follows. We flip a fair coin (independent from X). In case of Heads, we let Y=X. In case of Tails, we let Y=−X. Is Y normal? Justify your answer. yes no not enough information to determine Compute Cov(X,Y). Cov(X,Y)= Are X and Y independent? yes no not...
a. Finish the probability table b. DefineY =−2X+6.CalculateE(X),Std(X),E(Y),Std(Y),Cov(X,Y). (Hint: For the covariance, consider Var(X+Y)) X 1...
a. Finish the probability table b. DefineY =−2X+6.CalculateE(X),Std(X),E(Y),Std(Y),Cov(X,Y). (Hint: For the covariance, consider Var(X+Y)) X 1 2 3 4 5 P(X) 0.2 0.3 0.1 0.3
f_X,Y(x,y)=xy   0<=x<=1, 0<=y<=2 f_X(x)=2x   0<=x<=1,     f_Y(y)=y/2 0<=y<=2 choose the all correct things. a. E[X]=1/2 b. E[XY]=8/9 c. COV[X,Y]=1...
f_X,Y(x,y)=xy   0<=x<=1, 0<=y<=2 f_X(x)=2x   0<=x<=1,     f_Y(y)=y/2 0<=y<=2 choose the all correct things. a. E[X]=1/2 b. E[XY]=8/9 c. COV[X,Y]=1 d. correlation coefficiet =1
Given that y=e^x is a solution of the equation (x-1)y''-xy'+y=0, find the general solution to (x-1)y''-xy'+y=1.
Given that y=e^x is a solution of the equation (x-1)y''-xy'+y=0, find the general solution to (x-1)y''-xy'+y=1.
calculate the covariance and correlation between x and y when x represents the number on the...
calculate the covariance and correlation between x and y when x represents the number on the top of a die and y represents the number on the bottom of the die!
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0...
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0 < x < 1, y > 0, where n is an integer and n > 2. (a) Find the marginal PDF of X and its mean. (b) Find the conditional PDF of Y given X = x. (c) Deduce the conditional mean and the conditional variance of Y given X = x. (d) Find the mean and variance of Y . (e) Find the...
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
The random variables X and Y have a joint p.d.f. given by f(x,y) = (3(x +y...
The random variables X and Y have a joint p.d.f. given by f(x,y) = (3(x +y −xy))/7 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2. Find the following. (a) E[X], E[Y ] (b) Cov[X,Y]
1. Calculate the total differential for the given function. G(x,y) = e^5x ·ln(xy + 1) 2....
1. Calculate the total differential for the given function. G(x,y) = e^5x ·ln(xy + 1) 2. Apply the Second Derivative Test to the given function and determine as many local maximum, local minimum, and saddle points as the test will allow. F(x,y) = y^4 −7y^2 + 16 + x^2 + 2xy
differential equation one solution is given, xy''-(2x+1)y'+(x+1)y=x^2; y_1=e^x
differential equation one solution is given, xy''-(2x+1)y'+(x+1)y=x^2; y_1=e^x
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT