Question

1. Calculate the total differential for the given function. G(x,y) = e^5x ·ln(xy + 1) 2....

1. Calculate the total differential for the given function.
G(x,y) = e^5x ·ln(xy + 1)
2. Apply the Second Derivative Test to the given function and determine as many local maximum, local minimum, and saddle points as the test will allow.
F(x,y) = y^4 −7y^2 + 16 + x^2 + 2xy

Homework Answers

Answer #1

plz like ? if it helped you and if you have any doubts ask in comment section.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 1. (1 point) Find the critical point of the function f(x,y)=−(6x+y2+ln(|x+y|))f(x,y)=−(6x+y2+ln(|x+y|)). c=? Use the Second...
Problem 1. (1 point) Find the critical point of the function f(x,y)=−(6x+y2+ln(|x+y|))f(x,y)=−(6x+y2+ln(|x+y|)). c=? Use the Second Derivative Test to determine whether it is A. a local minimum B. a local maximum C. test fails D. a saddle point
Given the function f (x, y) = ax^2 2 + 2xy + ay.y 2-ax-ay. Take for...
Given the function f (x, y) = ax^2 2 + 2xy + ay.y 2-ax-ay. Take for a an integer value that is either greater than 1 or less than -1, and then determine the critical point of this function. Then indicate whether it is is a local maximum, a local minimum or a saddle point. Given the function f (x, y) = ax^2 +2 + 2xy + ay^2-2-ax-ay. Take for a an integer value that is either greater than 1...
1)Find an equation of the tangent plane to the surface given by the equation xy +...
1)Find an equation of the tangent plane to the surface given by the equation xy + e^2xz +3yz = −5, at the point, (0, −1, 2) 2)Find the local maximum and minimum values and saddle points for the following function: f(x, y) = x − y+ 1 xy . 3)Use Lagrange multipliers to find the maximum and minimum values of the function, f(x, y) = x^2 − y^2 subject to, x^2 + y 4 = 16.
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy -...
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy - 3x - 5. Then determine whether each critical point is a local maximum, local minimum, or saddle point. Then find the value of the function at the extreme(s).
1. At x = 1, the function g( x ) = 5x ln(x) − 3x is...
1. At x = 1, the function g( x ) = 5x ln(x) − 3x is . . . Group of answer choices has a critical point and is concave up decreasing and concave up decreasing and concave down increasing and concave up increasing and concave down 2. The maximum value of the function f ( x ) = 5xe^−2x over the domain [ 0 , 2 ] is y = … Group of answer choices 10/e 0 5/2e e^2/5...
f(x)=x^3-4x^2+5x-2 Find all critical numbers of the function, then use the second derivative test on each...
f(x)=x^3-4x^2+5x-2 Find all critical numbers of the function, then use the second derivative test on each critical number to determine if it is a local maximum or minimum. Show your work.
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second...
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second partials fxx(x,y)=16+4y, fxy(x,y)=4x and fyy(x,y)=2. Consider the point (0,0). Which one of the following statements is true? A. (0,0) is not a critical point of f(x,y). B. f(x,y) has a saddle point at (0,0). C. f(x,y) has a local maximum at (0,0). D. f(x,y) has a local minimum at (0,0). E. The second derivative test provides no information about the behaviour of f(x,y) at...
For the function f(x, y)=ln(1+xy) a.Find the value of the directional derivative of f at the...
For the function f(x, y)=ln(1+xy) a.Find the value of the directional derivative of f at the point (-1, -2) in the direction <3,4>. b.Find the unit vector that gives the direction of steepest increase of f at the point (2,3).
Given the function g(x)=4x^3−24x^2+36x, find the first derivative, g'(x) g′(x)= ??? Notice that g'(x)=0 when x=1,...
Given the function g(x)=4x^3−24x^2+36x, find the first derivative, g'(x) g′(x)= ??? Notice that g'(x)=0 when x=1, that is, g'(1)=0 Now, we want to know whether there is a local minimum or local maximum at x=1, so we will use the second derivative test. Find the second derivative, g''(x) g''(x)=???? Evaluate g"(1) g''(1)=??? Based on the sign of this number, does this mean the graph of g(x) is concave up or concave down at x=1? [Answer either up or down --...
Let  f (x, y)  =  (x − 9) ln(xy). (a) Find the the critical point (a, ...
Let  f (x, y)  =  (x − 9) ln(xy). (a) Find the the critical point (a, b). Enter the values of a and b (in that order) into the answer box below, separated with a comma. (b) Classify the critical point. (A) Inconclusive (B) Relative Maximum (C) Relative Minimum (D) Saddle Point
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT