Question

Suppose that the joint probability density function of the random variables X and Y is f(x,...

Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise.

(a) Sketch the region of non-zero probability density and show that c = 3/ 2 .

(b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1).

(c) Compute the marginal density function of X and Y and hence calculate E [X] and E [Y ].

(d) Find the conditional density function of X given Y = y.

(e) Determine the covariance between X and Y , cov [X, Y ]=E[XY ]E [X]E[Y ].

(f) State, giving reasons, whether X and Y are independent. (g) Find V ar[XY ]

Homework Answers

Answer #1

The Joint density function of the random variables X and Y is

a) The region is shown below

Now as total probability is 1, so

b)

As , X and Y are continuous random variables so their sum is also continuous .

Hence,

c) The marginal PDF's are given by

and

Hence,

and    

d) Using definition of conditional PDF we get

NOTE: As per rules, only 4 parts will be solved at a time

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y...
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y (x, y) = k(x + y^2) if 0 < x < 1 and 0 < y < 1 0 otherwise. Find the following: I: The expectation of XY , E(XY ). J: The covariance of X and Y , Cov(X; Y ).
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent
a) The joint probability density function of the random variables X, Y is given as f(x,y)...
a) The joint probability density function of the random variables X, Y is given as f(x,y) = 8xy    if  0≤y≤x≤1 , and 0 elsewhere. Find the marginal probability density functions. b) Find the expected values EX and EY for the density function above c) find Cov  X,Y .
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
Problem 4 The joint probability density function of the random variables X, Y is given as...
Problem 4 The joint probability density function of the random variables X, Y is given as f(x,y)=8xy if 0 ≤ y ≤ x ≤ 1, and 0 elsewhere. Find the marginal probability density functions. Problem 5 Find the expected values E (X) and E (Y) for the density function given in Problem 4. Problem 7. Using information from problems 4 and 5, find Cov(X,Y).
2. The joint probability density function of X and Y is given by                               &nbsp
2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1}
X and Y are continuous random variables. Their joint probability density function is given as f(x,y)...
X and Y are continuous random variables. Their joint probability density function is given as f(x,y) = 1/5 (y+2) for 0<y<1 and y-1<x<y+1. Calculate the conditional expectation E(x/y=0). Please show all the work and explain if the answer will be a number or just y in a given range.
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
A joint density function of the continuous random variables x and y is a function f(x,...
A joint density function of the continuous random variables x and y is a function f(x, y) satisfying the following properties. f(x, y) ≥ 0 for all (x, y) ∞ −∞ ∞ f(x, y) dA = 1 −∞ P[(x, y)  R] =    R f(x, y) dA Show that the function is a joint density function and find the required probability. f(x, y) = 1 8 ,   0 ≤ x ≤ 1, 1 ≤ y ≤ 9 0,   elsewhere P(0 ≤...